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Abstract. We introduce the notion of weighted abstract reduction sys-
tems (weighted ARSs), generalising standard and relative ARSs by al-
lowing non-uniform weights on transition steps. Weighted ARSs give
rise to a theory of rewriting where quantitative properties—noteworthy
complexity related properties—can be more directly studied. Unlike these
standard notions, weighted ARSs permit the study of quantitative prop-
erties of reduction systems of non-uniform weight, such as the analysis
of expectation-based properties of probabilistic systems. We establish
ranking functions as a means to analyse (strong) boundedness of weighted
ARSs, i.e., the property that weights of reductions are bounded from
above. We showcase their applicability by instantiating them to weighted
term rewrite systems and probabilistic reduction systems, the latter gen-
eralising Lyapunov ranking functions to reason about expected derivation
heights.

1 Introduction

Rewriting [7] provides a foundational theory of computing, with significant impact
on both the theoretical aspects of computer science and the development of
programming languages. Traditionally, rewriting primarily focuses on qualitative
properties—such as whether a system is terminating or confluent. However,
many applications in program analysis require a more fine-grained, quantitative
perspective. Complexity analysis, cost-sensitive transformations, and resource-
aware reasoning all demand a deeper understanding of the quantitative aspects of
reduction processes. The study of such quantitative features is crucial for various
quality assurance tasks, including guaranteed response time, smart contract
deployment costs, resilience against side-channel attacks, security of cryptographic
routines, and provable safety guarantees.

Abstract reduction systems (ARSs) provide a general model for a wide
class of, possibly nondeterministic or probabilistic, systems. A key strength
of ARSs is that they permit studying program properties independently of
specific programming paradigms. Yet, they often fail to capture quantitative
aspects effectively. A prototypical example is the complexity analysis of high-
level, declarative languages, where a single reduction step is not an elementary
operation. For instance, in the case of the λ-calculus, it is unrealistic to assume
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that a single β-reduction step incurs a uniform cost. To endow the λ-calculus
with a reasonable cost model—one that relates to Turing machines—Dal Lago
and Martini [10] for instance propose to measure the cost of a step in terms of the
absolute difference between the size of the reduct and redex. Some approaches to
complexity analysis (e.g., [2,8,11]) allow the specification of a program’s resource
consumption through annotations, the cost of a reduction step thereby becomes
dependent on the annotation. A final example, where ARSs fail to model costs
effectively, are stochastic, i.e., probabilistic systems.

The key observation of our work is that all these models can be effectively
modeled by a weighted extension of ARSs, where reduction steps additionally
carry weight information. Weights are taken from a general (ordered) monoid,
whose structure is used to define reflexive and transitive closures, and thereby
multi-step reductions. The monoid’s unit serves as the basis for reflexivity, while
its binary operation is used for sequential composition. Weights are otherwise
left abstract, and can thereby encompass a range of quantitative aspects.
– Using the ordered monoid ⟨N, 0,+,≤⟩, weighted ARSs encompass rewriting

under a unitary cost measure, where each reduction step is attributed a unit
cost 1. The cost measure of Dal Lago and Martini [10] falls also within this
setting, attributing cost max(1, |M | − |N |) to each β-step M →β N .

– Taking the ordered monoid ⟨N, 0,max,≤⟩, weighted ARSs endow computations
with “watermark”-like cost models, such as (maximal) space usage.

– Products of monoids, with all operations extended pointwise, can be used to
track simultaneously several cost metrics.

– Modelling stochastic reductions as an ARS over (multi)distributions [4], taking
weights ⟨R≥0, 0,+,≤⟩ facilitates the study of expected resource usage.

– The monoid
〈
NVar→N, 0,+

〉
, with all operations extended pointwise, can

attribute non-ground rewrite steps with a variable-size cost measure.
Weighted ARSs provide a natural framework for studying quantitative aspects

of computations directly. This encompasses quantitative variations of properties
traditionally studied—such as strategies, confluence, and termination—taking for
instance the length, or more generally cost, of reductions into account. In this work,
we focus on termination-like properties, specifically boundedness, demanding that
(cumulative) weights remain finite. We establish ranking functions, formalized as
embeddings from weighted ARSs into a canonical weighted ARS over weights
themselves, as a methodology for proving (strong) boundedness. Specifically, we
show that this methodology is sound if the underlying monoid is positive, and is
complete if the monoid is bounded-complete and continuous. Notably, all of the
aforementioned instances fall within this setting.

A natural question then is how these abstract notions relate to concrete
settings. First, we show that N-weighted ARSs provide a conservative extension
of classical and relative ARSs, serving as a sanity check of the proposed theory.
We then introduce weighted term rewrite systems (TRSs) and barycentric ARSs.
The former generalises first-order term rewrite systems, where each rule carries
a weight. We show how monotone F-algebras, a sound and complete method
for proving termination of TRSs, generalize to a sound and complete method
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for proving (strong) boundedness of weighted TRSs. Barycentric ARSs allow us
to model probabilistic reductions in a way that weights correspond to expected
runtimes or costs. We establish affine ranking functions as a mean to reason
about boundedness of barycentric ARSs.

Related Work. Attaching weights to rules is a natural idea that appears in various
contexts throughout the literature. One of the most well-studied examples is the
theory of weighted automata (cf. [12]). In the context of term rewriting, a form of
weighted (integer) TRSs was employed in [17] in order to keep track of the original
runtime cost during simplifying the systems. The idea has also been applied to
endow imperative [6], functional probabilistic [1], and quantum programs [5] with
non-uniform cost models, non-uniform in the sense that computation costs of
different primitives are not necessarily equal. Our weighted ARSs extract the
common essence and serve as a foundation of these works.

A closely related, but fundamentally different idea to incorporate quantitative
information is to map reduction steps to weights. For instance, in their study of
hyper-normalisation, van Oostrom and Toyama [18] introduce monoid-measured
ARSs, where steps are assigned weights from a monoid, yielding a derivation
measure that abstracts over reduction length. Gavazzo and Florio [15] define
quantitative ARSs, where steps are mapped to elements of a quantale—a monoid
endowed with a semilattice structure that satisfies certain distributivity laws.
Their construction induces a notion of distance between terms in the ARS,
conforming to the standard axioms of a metric space. In a similar fashion,
weighted transition systems [19] generalize weighted automata with additional
structures for metrical analysis. Laird et al. [16] endow a non-deterministic
version of Plotkin’s PCF with a quantitative semantics, where the denotation
of a (non-deterministic) function is turned from a relation between inputs and
outputs, to a function assigning weights to input/output pairs.

The fundamental difference of our work lies in the structure of the rewriting
relation: rather than augmenting ARSs (R ⊆ A×A) with mappings A×A → W ,
we extend ARSs to a ternary relation (R ⊆ W×A×A). As a result, our framework
imposes no intrinsic constraints on the nature of weights—for instance, they need
not represent distances or abstract measures of derivation length.

Finally, Faggian [13] introduces another orthogonal formalism, also dubbed
quantitative ARSs (QARSs), particularly aimed for the study of quantitative
behaviors of probabilistically evolving systems. QARSs assign quantities—the
observations—to states (A → W ). This way, fundamental properties of QARSs
can be studied through the sequence of observations. QARSs are mainly used
to study so called asymptotic behaviors of infinite reduction sequences, e.g.,
uniqueness of “limits” of reductions.

Outline. In Section 2, we introduce weighted ARSs and their fundamental
properties. In Section 3 we establish ranking functions as a means to reason
about bound on the weight an initial state can produce. In Section 4 we present
the aforementioned instances of weighted ARSs: standard ARSs, weighted TRSs,
and barycentric ARSs, and conclude in Section 5.
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2 Weighted Abstract Rewriting

In this section we formally introduce weighted ARSs—a generalization of ARSs
where transitions between states have (possibly different) weights. To model the
concatenation of multiple weighted reduction steps, we will assume that weights
have a monoidal structure. This enables us to model reflexivity and transitivity
in the weighted setting. We will also demand that weights are (partially) ordered,
so that we can argue about bounds on weights.

We quickly recap some basic notions. A partially ordered set (poset) is a set
W equipped with a partial order ≤ on W. We say a subset X ⊆ W of a poset
has an (upper) bound b ∈ W (written X ≤ b), if x ≤ b for all x ∈ X. We say
W is bounded-complete if every X ⊆ W that has an upper bound in W has the
least one, supX. A monoid is a set W equipped with an associative operator
+ defined on W and its neutral element 0 ∈ W, i.e., (x+ y) + z = x+ (y + z)
and 0 + x = x+ 0 = x for all x, y, z ∈ W. A monoid W is ordered if it is also a
poset where x ≤ y implies x+ z ≤ y+ z and z+x ≤ z+ y for all x, y, z ∈ W . An
ordered monoid W is positive if 0 ≤ w for all w ∈ W . We say W is continuous if
whenever supX ∈ W is defined, sup {x+ w | x ∈ X} is defined and is supX +w.

Example 1. The sets N and R≥0 of natural and non-negative real numbers form
bounded-complete positive monoids with 0, +, and ≤ as usual. For any nonempty
X, the function space X → W over a bounded-complete positive monoid W
forms one with respect to the pointwise extensions, i.e., 0(x) := 0, (f + g)(x) :=
f(x) + g(x), and f ≤ g :⇐⇒ ∀x ∈ X. f(x) ≤ g(x).

Definition 1 (weighted ARS). A W-weighted ARS over state space A and
positive monoid W is a ternary relation3 ⇝ ⊆ W × A× A. We write ⇝[w] for
{⟨a, b⟩ | ⟨w, a, b⟩ ∈⇝}, and hence a⇝[w] b means ⟨w, a, b⟩ ∈⇝. We say ⇝ is a
weighted order if it is

– reflexive: a⇝[0] a for all a ∈ A; and
– transitive: a⇝[w] b and b⇝[v] c implies a⇝[w+v] c for all a, b, c ∈ A.

We denote by ⇝̂ the least weighted order containing ⇝, and write ⇝w for
⇝̂[w]. When we know that ⇝ is transitive, we may write ⇝w instead of ⇝[w].
Alternatively, the ARS ⇝w can be defined by the following inference rules:

a⇝0 a
a⇝[w] b
a⇝w b

a⇝w b b⇝v c
a⇝w+v c

Definition 2 (closures and normal forms). Given a weighted ARS ⇝ ⊆
W ×A×A, we define transitive weighted ARSs ⇝≥ and ⇝> as follows:

a⇝≥w b :⇐⇒ ∃v ≥ w. a⇝v b a⇝>w b :⇐⇒ ∃v > w. a⇝v b

3 In the literature a weighted relation is often given as A ×W × A. In our context,
W ×A×A turns out notationally more convenient.
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(a) general case.

WN

SN = WB

SB

(b) non-Zeno;
e.g. relative TRSs.

WN WB

SB

SN

(c) strongly f.b.;
e.g., probabilistic TRSs

WN

SN = WB = SB

(d) strongly f.b. and non-Zeno; e.g., TRSs

non-Zeno f.b.

f.b. non-Zeno

Fig. 1: Hasse diagrams illustrating the impact of non-Zeno and finite branching
restrictions on the relationships among the properties from Definition 4. Here
TRSs are supposed to be finite.

We call ⇝≥ the downward closure as w ≥ v implies ⇝≥w ⊆⇝≥v. By convention,
we write ⇝∗ ⊆ A × A for ⇝≥0 and ⇝+ for ⇝>0. We say a ∈ A is a normal
form (or terminal) with respect to ⇝ if no such b ∈ A exists that a⇝+ b. The
set of normal forms with respect to ⇝ is denoted by NF(⇝).

Definition 3 (weighted reduction sequence). A reduction sequence w.r.t. a
weighted ARS ⇝ is a (possibly infinite) sequence a0 ⇝[w1] a1 ⇝[w2] a2 ⇝[w3] · · · .
The sequence is called

– terminating, if there exists n ∈ N such that wn = wn+1 = · · · = 0;
– bounded (by b ∈ W), if w1 + · · ·+ wn ≤ b for any n = 1, 2, . . . ;
– Zeno, if it is bounded but not terminating.

Example 2. Consider the R≥0-weighted ARS ⇝ :=
{〈

1
2n , n, n+ 1

〉 ∣∣ n ∈ N
}
∪

{⟨0, n, n⟩ | n ∈ N} over states N. Reduction sequences such as 0 ⇝[1] 1 ⇝[1/2]

2 ⇝[0] 2 ⇝[0] · · · are terminating, as after the third step only weight-0 steps
occur. The sequence 0 ⇝[1] 1 ⇝[1/2] 2 ⇝[1/4] 3 ⇝[1/8] · · · is not terminating as
1
2n ̸= 0 for any n ∈ N, but is bounded by 1 + 1

2 + 1
4 + 1

8 + · · · = 2; i.e., Zeno.

We now define the properties of weighted ARSs that are of interest in this
work. The first two properties generalize the corresponding notions of standard
ARSs, and the next two generalize the positive and strong almost-sure termination
of probabilistic ARSs [4, 9], respectively; the latter was (independently) called
“bounded termination” by [14], which inspired the naming below.

Definition 4 (properties of weighted ARSs). A weighted ARS ⇝ over A is

1. WN⇝(S): (weakly) normalizing on S ⊆ A if every a ∈ S has b ∈ NF(⇝)
such that a⇝∗ b;

2. SN⇝(S): terminating on S ⊆ A if any reduction sequence from any a ∈ S is
terminating;
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(b) WB \WN.

· · ·
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(c) (WB∩SN)\SB.

· · ·
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0 0 0
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(d) (WB ∩ SN) \ SB.

Fig. 2: Examples demonstrating the strictness of the implications in Proposition 1.

3. WB⇝(S): weakly bounded on S ⊆ A if any reduction sequence from any
a ∈ S is bounded;

4. SB⇝(S): strongly bounded on S ⊆ A if every a ∈ S has p ∈ W such that
any reduction sequence from a is bounded by p;

5. strongly finitely branching if for every a ∈ A, both
{
⟨w, b⟩

∣∣ a⇝[w] b
}

and{
b
∣∣ a⇝0 b

}
are finite;

6. non-Zeno if it admits no Zeno sequence.

Fig. 1 depicts the relationships between these properties, formally proven in
Proposition 1 below. The various Hasse diagrams illustrate the following cases:
(a) without restrictions; (b) non-Zeno systems; (c) strongly finitely branching
systems; and (d) systems that are both strongly finitely branching and non-Zeno.
These subclasses are of particular interest, as each corresponds to a distinct class
of reduction systems, studied within this work.

Proposition 1. Let ⇝ ⊆ W ×A×A be a weighted ARS and let S ⊆ A. Then

1. SN⇝(S) =⇒ WN⇝(S);
2. SB⇝(S) =⇒ WB⇝(S);
3. SN⇝(S) =⇒ WB⇝(S);
4. SN⇝(S) ⇐⇒ WB⇝(S) if ⇝ is non-Zeno;
5. SN⇝(S) =⇒ SB⇝(S) if ⇝ is strongly finitely branching;

Proof. We only present interesting ones: 3 and 5. For 3, consider a0 ⇝[w1]

a1 ⇝[w2] a2 ⇝[w3] · · · . By assumption wn = wn+1 = · · · = 0 for some n ∈ N.
Defining p := w1 + · · ·wn−1 proves that the considered sequence is bounded.

For 5, suppose that SN⇝(S) and ⇝ is strongly finitely branching. For an
arbitrary a ∈ S, we prove the set X :=

{
w

∣∣ ∃b. a⇝w b
}

is bounded. Note that
there is a surjection onto X from the paths of the graph over A where for each
w > 0 with a⇝[w] ·⇝0 b there is a corresponding arc from a to b. As this graph
is finitely branching, König’s Lemma tells that if there are infinitely many paths,
then there exists an infinite path a ⇝0 · ⇝[w1] a1 ⇝0 · ⇝[w2] · · · with wi > 0.
Such reduction does not exist, due to the termination condition. Therefore X is
finite, and thus

∑
w∈X w is an upper bound of X due to positiveness. ⊓⊔

The implications in Proposition 1 are strict, as illustrated by examples in Fig. 2.
As for classical ARSs, weak normalisation does not imply strong normalisation



Weighted Rewriting 7

(Fig. 2(a)). The Zeno weighted ARS from Fig. 2(b) shows that in general bound-
edness does not imply normalisation. The non-Zeno, infinitely branching weighted
ARS from Fig. 2(c) shows that weak boundedness and normalisation does not
imply strong boundedness. Fig. 2(d) is another counterexample of the claim,
which is finitely branching as a graph but fails the finiteness of zero-weighted
reductions required in Definition 4(5).

3 Bound Analysis via Ranking Functions

Ranking functions are the prototypical way to prove termination, and also play
a fundamental role in complexity analysis. For discrete programs over a state
space A with transition relation 7→ ⊆ A × A, a ranking function is a function
η : A → N ∪ {∞} which is finite on initial states and decreases along state
transitions: a 7→ b implies η(a) > η(b) (i.e., η embeds 7→ into >). In this section,
we adapt ranking functions to weighted ARSs, formalised as embeddings between
weighted ARSs.

Definition 5 (embedding). Let ⇝ ⊆ W × A × A and ≻ ⊆ W × X × X be
weighted ARSs. We say a mapping η : A → X is an embedding of ⇝ into ≻ if
a⇝[w] b implies η(a) ≻[w] η(b).

An embedding is required to strictly preserve the weight of reduction steps.
It is possible to relax the condition so that a step of weight w is embedded into
a step of weight at least w; however, the same effect is achievable by embedding
into the downward-closed weighted ARS ≻≥w.

An embedding witnesses that every ⇝-reduction sequence can be associated
with a corresponding ≻-reduction sequence of identical weight. Indeed, for any
state a ∈ A, the maximal weight of ⇝-reduction sequences is controlled in terms
of η(a) and ≻. To state the relationship precisely, we introduce the notion of
potential : a function in the state space capturing possible reduction weights.

Definition 6 (potential). Let ⇝ ⊆ W ×A×A be a weighted ARS. We define
the potential of a ∈ A as the set Pot⇝(a) := {w | ∃b. a⇝w b} ⊆ W. We write
pot⇝(a) for supPot⇝(a).

Note that a is a normal form of ⇝ if its (only) potential is 0. Proving strong
boundedness is equivalent to proving boundedness on potentials, by definition.

Proposition 2. SB⇝(S) iff for every a ∈ S, Pot⇝(a) has a bound b ∈ W.

Theorem 1 (embedding, soundness). Let η : A → X be an embedding of
⇝ ⊆ W ×A×A into ≻ ⊆ W ×X ×X. Then Pot⇝(a) ⊆ Pot≻(η(a)) for every
a ∈ A. In particular, for S ⊆ A, SB≻(η(S)) implies SB⇝(S).

Proof. Fix a ∈ A and w ∈ Pot⇝(a), i.e., a⇝w b for some b ∈ A. Thus, there is a
sequence

a = a0 ⇝
[w1] a1 ⇝

[w2] · · ·⇝[wn] an = b
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such that w = w1 + · · ·+ wn. By Definition 5,

η(a) = η(a0) ≻[w1] η(a1) ≻[w2] . . . ≻[wn] η(an) = η(b)

i.e., η(a) ≻w η(b) and hence w ∈ Pot≻(η(a)). This concludes Pot⇝(a) ⊆
Pot≻(η(a)). Moreover, if Pot≻(η(a)) has a bound b ∈ W then so does Pot⇝(a),
trivially. Hence, SB≻(η(S)) implies SB⇝(S) by Proposition 2. ⊓⊔

Ranking functions can now be seen as embeddings into a canonical order ≻W
defined as follows. Note that ≻W is downward-closed by construction.

Definition 7 (ranking function). Let ∞ /∈ W be a fresh top element. We
denote by W∞ the ordered monoid extending W, where w < ∞ and w +∞ :=
∞ for all w ∈ W. We define the weighted order ≻W ⊆ W × W∞ × W∞ by
x ≻[w]

W y :⇐⇒ x ≥ w + y. We call an embedding η : A → W∞ of a weighted
ARS ⇝ ⊆ W ×A×A into ≻W a (W-valued) ranking function for ⇝.

Lemma 1. For a positive monoid W, SB≻W (W) and pot≻W
(x) = x.

Proof. Fix x ∈ W. Note that Pot≻W (x) = {w ∈ W | ∃y ∈ W∞. x ≥ w + y}. Be-
cause of positiveness, x ≥ w+y implies w ≤ x and thus x is a bound of Pot≻W (x).
Since x = x+0 ∈ Pot≻W (x), x is the maximum and thus supremum of Pot≻W (x),
i.e., pot≻W

(x) = supPot≻W (x) = x. ⊓⊔

The following is an immediate consequence of Theorem 1 and Lemma 1:

Corollary 1 (ranking functions, soundness). If a weighted ARS ⇝ ⊆ W ×
A×A admits a ranking function η : A → W∞ with η(S) ⊆ W for S ⊆ A, then
SB⇝(S). In particular, pot⇝(a) ≤ η(a) for every a ∈ S.

Completeness also holds, at least if the weights constitute a bounded-complete
continuous monoid. Since N and R≥0 with usual 0, + and ≤ are such instances,
N-valued (R≥0-valued) ranking functions yield both a sound and complete method-
ology for proving strong boundedness. We leave it for a future work to find a
milder condition preserving completeness.

Theorem 2 (ranking functions, completeness). If W is a bounded-complete
continuous monoid and a weighted ARS ⇝ ⊆ W ×A×A is strongly bounded on
S, then ⇝ admits a ranking function η : A → W∞ with η(S) ⊆ W.

Proof. Observe that supX ∈ W∞ is defined for any X ⊆ W: if X has a bound
in W then supX ∈ W due to bounded-completeness, and supX = ∞ otherwise.
Therefore, pot⇝ : A → W∞ is defined.

Now we show that pot is an embedding of ⇝ into ≻W . So we prove that
a ⇝[w] b implies pot⇝(a) ≻[w]

W pot⇝(b). If pot⇝(a) = ∞ the claim is trivial.
Otherwise, using a⇝[w] b, observe that

Pot⇝(a) = {v | ∃c. a⇝v c} ⊇
{
w + u

∣∣ ∃c. b⇝u c
}

=: X .
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Since pot⇝(a) ∈ W is a bound of Pot(a), it is also a bound of X; thus, supX ∈ W
is defined due to bounded-completeness. Now due to continuity

pot⇝(a) ≥ supX = w + sup
{
u
∣∣ b⇝u c

}
= w + pot⇝(b) ,

i.e., indeed pot⇝(a) ≻[w]
W pot⇝(b) holds. Finally, since SB⇝(S) means that

Pot⇝(a) has a bound in W for every a ∈ S, bounded-completeness gives
pot⇝(a) ∈ W. This concludes pot⇝(S) ⊆ W. ⊓⊔

4 Instances

Having defined weighted ARSs and a method to prove strong boundedness, the
aim of this section is to demonstrate their versatility. We begin by formally
stating the connection between (unitary) weighted ARSs and ARSs, ensuring
that the notions we introduced align with standard concepts in abstract rewriting.
Next, we generalize term rewrite systems (TRSs) to weighted TRSs, where rules
carry weights, and show how the interpretation method can be used to prove
strong boundedness. Finally, we introduce barycentric ARSs. One particular
class of barycentric ARSs is given by probabilistic ARSs, with weights modelling
expected runtime. Through ranking functions, we obtain a methodology for
proving probabilistic termination properties.

4.1 Abstract Reduction System

We may identify an ARS 7→ ⊆ A × A as the N-weighted ARS {1} × 7→ =
{⟨1, a, b⟩ | a 7→ b}. This is justified by the following correspondences. As usual,
7→n, 7→+, 7→∗, and NF( 7→) denote the standard n-th fold, transitive closure,
reflexive-transitive closure, and the set normal forms of 7→, respectively. The
derivation height dh7→(a) ∈ N∞ of a ∈ A with respect to 7→ is defined by
dh7→(a) := sup{n ∈ N | ∃b. a 7→n b}.

Proposition 3. For any (unweighted) ARS 7→ ⊆ A×A :
– ({1} × 7→)α = 7→α where α ∈ N ∪ {∗,+},
– NF({1} × 7→) = NF(7→), and pot{1}×7→(s) = dh7→(s).

Clearly the N-weighted ARS {1} × 7→ is non-Zeno, so termination coincides
with weak boundedness due to Proposition 1 (see also Fig. 1 (b)). If 7→ is finitely
branching, then {1} × 7→ is strongly finitely branching, and termination coincides
with weak and strong boundedness (see Fig. 1 (d)).

The correspondence extends to relative reduction. The reduction of an ARS
7→ relative to another ARS ∼ is modeled by the ARS 7→/∼ := ∼∗ ◦ 7→ ◦ ∼∗.
Attributing 7→ weight one and ∼ weight zero allows us to model relative reduction
through N-weighted ARS 7→//∼ := ({1} × 7→) ∪ ({0} × ∼).

Proposition 4. For any ARSs 7→,∼ ⊆ A×A :
– (7→//∼)0 = ∼∗ and (7→//∼)n = (7→/∼)n where n = 1, 2, . . . ,
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– (7→//∼)∗ = (7→ ∪ ∼)∗ = ∼∗ ∪ (7→/∼)∗,
– (7→//∼)+ = (7→/∼)+,
– NF(7→//∼) = NF(7→/∼), and pot7→//∼(s) = dh7→/∼(s).

4.2 Term Rewrite Systems

We now introduce weighted versions of term rewrite systems (TRSs), i.e., TRSs
where each rule carries a weight. Usual TRSs correspond to {1} ×R. The reduc-
tion relation attributed to a weighted TRS will be given as a weighted ARS over
terms. We define monotone algebras (i.e., the interpretation method) as a sound
and complete methodology for proving strong boundedness.

We quickly recap notations. For a signature F and variables V , let us denote by
T (F ,V) the set of terms. Terms are denoted by s, t, l, r below. For a substitution
σ, we write tσ for its application to a term t. For a context C, i.e., term with
one special symbol □, we denote by C[t] the term obtained by replacing □ in C
by t. With Var(t) we denote the set of variables in t.

Definition 8 (weighted TRS). A W-weighted rule is a triple ⟨w, l, r⟩ ∈ W ×
T (F ,V)× T (F ,V), where variable conditions l ̸∈ V and Var(r) ⊆ Var(l) hold. A
W-weighted TRS is a set R of weighted rules.

Definition 9 (weighted rewrite relation). A W-weighted rewrite relation
is a W-weighted ARS ⇝ that is closed under substitutions and contexts; i.e.,
C[lσ]⇝[w] C[rσ] for every context C and substitution σ whenever l⇝[w] r.

We define the weighted ARS ⇝R over T (F ,V) as the least weighted rewrite
relation containing R; more concretely C[lσ]⇝[w]

R C[rσ] for every weighted rule
⟨w, l, r⟩ ∈ R, context C and substitution σ. It is well known that a TRS is
terminating if and only if it is included in a well-founded rewrite relation. A
similar correspondence holds for weighted TRSs:

Theorem 3. Let R be a W-weighted TRS. The rewrite relation ⇝R is strongly
bounded if and only if R ⊆ ≻ for a strongly bounded weighted rewrite relation ≻.

Proof. For the “if” direction, suppose ≻ is a strongly bounded rewrite relation
containing R. Suppose C[lσ]⇝[w]

R C[rσ] with ⟨w, l, r⟩ ∈ R. Since R ⊆ ≻, we have
l ≻[w] r, as ≻ is a rewrite relation it follows that C[lσ] ≻[w] C[rσ]. Consequently,
the identity function embeds⇝R into ≻. From this, it follows that⇝R is strongly
bounded by Theorem 1. The “only if” direction follows by taking ⇝R for ≻. ⊓⊔

The interpretation method, which interprets terms through an algebra into
a well-founded order ≻, is among the most fundamental methods for proving
termination of standard TRSs. This method naturally adapts to weighted TRSs
for proving strong boundedness: An F-algebra is a set A equipped with the
interpretation fA : An → A of every n-ary symbol f ∈ F . The interpretation
JsKαA of terms s ∈ T (F ,V) under assignment α : V → A is defined as usual.
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Definition 10 (weighted monotone F-algebra). A (W-weighted) monotone
F -algebra ⟨A,≻⟩ consists of an F-algebra A and a weighted ARS ≻ ⊆ W×A×A,
such that every interpretation is monotone with respect to ≻, that is, x ≻[w] y
implies fA(. . . , x, . . . ) ≻[w] fA(. . . , y, . . . ) for every f ∈ F .

Given a monotone F-algebra ⟨A,≻⟩ we define the weighted ARS ≻A over
terms by s ≻[w]

A t iff JsKαA ≻[w] JtKαA holds for every assignment α : V → X.

Lemma 2. For a monotone F-algebra ⟨A,≻⟩, ≻A is a weighted rewrite relation.

Proof. Reasoning inductively, JsθKαA = JsKJθKαA
A , where J·KαA is extended homo-

morphically to the substitution θ. Closure under substitutions now follows from
definition of ≻A, closure under contexts by monotonicity. ⊓⊔

Let us call an F-algebra ⟨A,≻⟩ strongly bounded if ≻ is.

Theorem 4. A weighted TRS R is strongly bounded if and only if R ⊆ ≻A for
a strongly bounded monotone F-algebra ⟨A,≻⟩.

Proof. The “if”-direction follows by Theorem 3 and Lemma 2. The “only if”
direction holds taking for ⟨A,≻⟩ the W-weighted F-algebra ⟨T ,⇝R⟩, where T
is the term algebra. Trivially, R ⊆⇝R = (⇝R)T and ⇝R is monotone. ⊓⊔

One prototypical instance for the order ≻ is the canonical weighted ARS ≻N;
this way, interpretations over naturals can be seen as a way to inductively define
ranking functions on TRSs. Another noticeable instance is ≻R≥0

; using such
real-valued interpretations one can prove strong boundeness, which is equivalent
to termination as long as the set of rewrite rules is finite (compare Fig. 1 (d)).

4.3 Barycentric ARSs

Probabilistic ARSs were introduced by Bournez and Garnier [9] as a means to
study reduction systems with probabilistic behavior. In essence, probabilistic
ARS (over objects A) allow sampling of reducts from a (probability) distribution,
a function d : A → [0, 1] with

∑
a∈A d(a) = 1, assigning to each a ∈ A a

probability d(a). Rules in probabilistic ARSs take the form a → d; the intended
meaning of such a rule is that a reduces to b with probability d(b). When a
policy that resolves non-deterministic choices is fixed, reduction sequences can be
defined in terms of stochastic processes. Equivalently, reduction can be defined
directly through an ARS over multidistributions [3,4], a structure that generalises
probability distributions and multisets, encapsulating the probabilistic and non-
deterministic effects, respectively. We will generalize probabilistic ARSs into
a class of weighted ARSs called barycentric ARSs. Before, we recap notions,
following the presentation of [4].

We denote the set of distributions on A by D(A). The convex combinations of
distributions are defined by

(∑
i∈I pi · di

)
(a) :=

∑
i∈I pi · di(a) for

∑
i∈I pi = 1.

We may view distributions as sets of pairs of a ∈ A and p > 0 written p : a, i.e.,
d = {d(a) : a | a ∈ A, d(a) > 0}. A (sub-)multidistribution on A is a multiset µ
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of such pairs p : a, satisfying |µ| :=
∑

(p:a)∈µ p = 1 (≤ 1). We denote the set of
(sub-)multidistributions on A by M(A) (M≤1(A)). The (sub-)convex combination
of multidistributions ⟨µi⟩i∈I along probabilities pi > 0 with

∑
i∈I pi ≤ 1 is the

(sub-)multidistribution defined by:⊎
i∈I pi · µi :=

{{
pi · qj : aj

∣∣ i ∈ I, µi = {{qj : aj}}j∈J , j ∈ J
}}

A probabilistic ARS over A is a set P ⊆ A×M(A). The probabilistic one-step
reduction is given in [4] by an ARS ↪→P ⊆ M≤1(A) × M≤1(A). Informally,
µ ↪→P ν if ν is obtained from µ by (i) removing terminal objects (∄µ. a P µ),
and by (ii) replacing every occurrence of a reducible object a by a corresponding
reduct scaled by the associated probability. Formally, the ARS ↪→P can be defined
inductively, as follows:

∄µ. a P µ

{{1 : a}} ↪→P ∅
a P µ

{{1 : a}} ↪→P µ

∑
i∈I pi ≤ 1 ∀i ∈ I. µi ↪→P νi⊎
i∈I pi · µi ↪→P

⊎
i∈I pi · νi

A probabilistic reduction sequence is a sequence µ⃗ = ⟨µ0, µ1, µ2 . . . ⟩ such that

µ0 ↪→P µ1 ↪→P µ2 ↪→P · · · (1)

where µn represents the state distribution after n-step transitions from the
initial state distribution µ0. As terminal objects are removed along the way, |µn|
quantifies the possibility of having state transitions of length at least n, following
the reduction strategy implicit in (1).

Let redP(µ) denote the set of all probabilistic reduction sequences starting
form µ. A probabilistic ARS P is said to be almost surely terminating (AST)
if the probability of having infinite transitions is zero: limn→∞ |µn| = 0 for any
µ⃗ ∈ redP({{1 : a}}) of any a ∈ A; P is said to be positively AST if the expected
derivation length edl(µ⃗) :=

∑
n≥1 |µn| ∈ R∞

≥0 is finite for any µ⃗ ∈ redP({{1 : a}})
of any a ∈ A; and P is strongly AST if the expected derivation height

edhP(µ) := sup{edl(ν⃗) | ν⃗ ∈ redP(µ)}

is finite for any µ = {{1 : a}} with a ∈ A.

Example 3. Let N := {n | n ∈ N} be a fresh copy of N, and consider the proba-
bilistic ARS G over N ⊎ N, defined as

G := {⟨n, {{1/2 : n, 1/2 : n+ 1}}⟩ | n ∈ N} .

Then, for instance, there is an infinite reduction sequence

{{1 : 0}} ↪→G {{1/2 : 0, 1/2 : 1}} ↪→G {{1/4 : 1, 1/4 : 2}} ↪→G {{1/8 : 2, 1/8 : 3}} ↪→G · · ·

whose expected derivation length is 1 + 1
2 + 1

4 + · · · = 2.
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Now we capture probabilistic ARS as a class of weighted ARSs, where the
states and weights constitute barycentric algebras. A barycentric algebra (also
called a convex space) is typically given as a set X equipped with a binary
operation +p : X ×X → X with x +p y giving the mean of x and y weighted
by p ∈ [0, 1], satisfying certain laws. The binary operator extends to finite sums∑n

i=0 pi · xi for
∑n

i=0 pi = 1, and partially to infinite sums
∑

i pi · xi, which can
then be used to define a partial expectation operator E : M(X) ⇀ X. In this
paper, we just assume the presence of such partial operator E.

Definition 11 (multidistribution-algebra). A partial M-algebra is a set X
equipped with a partial barycenter operator E : M(X) ⇀ X. We say X is an
M-algebra if E(µ) ∈ X for all µ ∈ M(X). An M-algebraic monoid is a monoid
which is also an M-algebra.

The monoid R≥0 is a partial M-algebra by defining E({{pi : xi}}i∈I) :=∑
i∈I pi ·xi, and R∞

≥0 is an M-algebra. The sets D(X) and M(X) of distributions
and multidistributions are M-algebras with E({{pi : di}}i∈I) :=

∑
i∈I pi · di and

E({{pi : µi}}i∈I) :=
⊎

i∈I pi · µi,4 respectively. This, in turn, allows us to model
ARSs with probabilistic behaviour as barycentric ARSs.

Definition 12 (barycentric ARS). A barycentric ARS is a weighted ARS
⇝ ⊆ W ×A×A where W is a partial M-algebra and A is an M-algebra, such
that if E{{pi : wi}}i∈I ∈ W and ∀i ∈ I. ai ⇝[wi] bi, then

E{{pi : ai}}i∈I ⇝
[E{{pi:wi}}i∈I ] E{{pi : bi}}i∈I .

Given a weighted ARS ⇝ ⊆ W×A×A, we denote the least barycentric weighted
order extending ⇝ by ⇝̃.

Example 4. The R≥0-weighted ARS ⇝R over distributions of molecules, defined
by the single rule

{1/2 : HCl, 1/2 : NaOH}⇝[56.5]
R {1/2 : NaCl, 1/2 : H2O} ,

models the classical neutralization reaction, turning hydrogen chloride and sodium
hydroxide into salt and water, at a unit weight of 56.5 (kJ/mol). Then, for instance,
there is a derivation leading to a normal form:

{1/5 : HCl, 4/5 : NaOH}
= 1/5{1/2 : HCl, 1/2 : NaOH}+ 1/5{1/2 : HCl, 1/2 : NaOH}+ 3/5{1 : NaOH}
⇝̃11.3

R 1/5{1/2 : NaCl, 1/2 : H2O}+ 1/5{1/2 : HCl, 1/2 : NaOH}+ 3/5{1 : NaOH}
⇝̃11.3

R 1/5{1/2 : NaCl, 1/2 : H2O}+ 1/5{1/2 : NaCl, 1/2 : H2O}+ 3/5{1 : NaOH}
= {1/5 : NaCl, 1/5 : H2O, 3/5 : NaOH} .

4 This instantiation is possible because we do not impose the usual idempotency law
x+p x = x, i.e., we do not require E{{pi : µ}}i∈I = µ for

∑
i pi = 1 to hold.
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Example 5. The R≥0-weighted ARS G from Example 3 is modeled as weighted
ARS over multidistributions M(N ∪ N) defined through the rules

{{1 : n}}⇝[1]
G {{1/2 : n, 1/2 : n+ 1}} for all n ∈ N.

Then, for instance, the following infinite reduction, whose weight is bounded
precisely by 2, corresponds to the reduction from Example 3:

{{1 : 0}} ⇝̃1
G {{1/2 : 0, 1/2 : 1}} ⇝̃1/2

G {{1/2 : 0, 1/4 : 1, 1/4 : 2}} ⇝̃1/4
G · · · .

The above construction generalises to arbitrary probabilistic ARSs: Given
a probabilistic ARS P over A, we define the R≥0-weighted ARS over the state
space M(A) by {{1 : a}}⇝[1]

P µ :⇐⇒ a P µ. The induced barycentric weighted
order ⇝̃P can also be defined inductively:

µ ⇝̃0
P µ

µ ⇝̃w
P ν ν ⇝̃v

P ξ

µ ⇝̃w+v
P ξ

a P µ

{{1 : a}} ⇝̃1
P µ

∀i ∈ I. µi ⇝̃
wi

P νi⊎
i∈I pi · µi ⇝̃

Σi∈I pi·wi

P
⊎

i∈I pi · νi

where the last rule assumes
∑

i∈I pi · wi < ∞. Unlike the one-step ↪→P , the
weighted order ⇝̃P already covers multi-step reductions. As illustrated in Exam-
ple 5, terminals remain persistent through reductions. The weight w in a step
µ ⇝̃w

P ν gives the expected number of reduction steps carried out in the reduction
from µ to ν. Precisely, the potentials reflect expected derivation heights:

Lemma 3. Let P ⊆ A×M(A) be a probabilistic ARS over A. Then edhP(µ) =
pot⇝̃P

(µ) for every proper multidistribution µ ∈ M(A).

Proof. Observe that, for µ, ν, ρ ∈ M≤1(A), if µ ↪→P ν, then µ ⊎ ρ ⇝̃|ν|
P ν ⊎ ξ ⊎ ρ,

where ξ ⊆ µ gives the sub-multidistribution of terminals in µ. We first show

edhP(µ) = sup
{∑∞

i=1 |µi|
∣∣ µ ↪→P µ1 ↪→P µ2 ↪→P . . .

}
≤ pot⇝̃P

(µ)

for every proper multidistribution µ. To this end, consider an infinite reduction
of the form µ ↪→P µ1 ↪→P µ2 ↪→P · · · . The above observation inductively yields

µ ⇝̃|µ1|
P µ1 ⊎ ξ1 ⇝̃

|µ2|
P µ2 ⊎ ξ1 ⊎ ξ2 ⇝̃

|µ3|
P · · · ⇝̃|µn|

P µn ⊎ ξ1 ⊎ · · · ⊎ ξn ,

and thus µ ⇝̃|µ1|+···+|µn|
P µn ⊎ ξ1 ⊎ · · · ⊎ ξn for every n ∈ N. By the definition

of potentials, we have |µ1| + · · · + |µn| ≤ pot⇝̃P
(µ) for every n ∈ N, and thus∑∞

i=1 |µi| ≤ pot⇝̃P
(µ). We conclude by showing

edhP(µ) ≥ sup
{
w

∣∣ µ ⇝̃w
P ν

}
= pot⇝̃P

(µ) ,

that is, w ≤ edhP(µ) whenever µ ⇝̃w
P ν. More precisely we prove edhP(µ) ≥

w + edhP(ν) by induction on the derivation of µ ⇝̃w
P ν. The claim is trivial if

µ = ν and w = 0. If µ ⇝̃u
P ξ ⇝̃v

P ν and w = u+ v, then

edhP(µ) ≥ u+ edhP(ξ) ≥ u+ v + edhP(ν) = w + edhP(ν)
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by the induction hypotheses. If µ = {{1 : a}}, a P ν, and w = 1, then we
conclude as edhP({{1 : a}}) ≥ 1 + edhP(ν) by definition of edhP . Finally, consider
µ =

⊎
i∈I pi · µi, ν =

⊎
i∈I wi · νi, w =

∑
i∈I pi · wi, and µi ⇝

wi

P νi for all i ∈ I.
It is not difficult to show that edhP(µ) =

∑
i∈I pi · edhP(µi) (cf. [4, Lemma 4]).

By induction hypothesis, edhP(µi) ≥ wi + edhP(νi), and consequently,

edhP(µ) =
∑
i∈I

pi · edhP(µi) ≥
∑
i∈I

pi · (wi + edhP(νi)) = w + edhP(ν) . ⊓⊔

Proposition 5. A probabilistic ARS P ⊆ A×M(A) is strongly AST iff ⇝̃P is
strongly bounded on singleton multidistributions.

As we have seen in Corollary 1 and Theorem 2, embeddings of ⇝̃ into the
canonical W-weighted ARS ≻W are also sound and complete for proving strong
boundedness of barycentric ARSs. For soundness, one can use embeddings of ⇝
instead of the barycentric extension ⇝̃, if the embeddings are affine.

Definition 13 (affinity). Let A and X be M-algebras, with barycenter op-
erators EA and EX , respectively. We say a mapping η : A → X is affine if
η
(
EA{{pi : ai}}i∈I

)
= EX{{pi : η(ai)}}i∈I .

Theorem 5 (affine embedding, soundness). Let W be a partial M-algebra,
A and X be M-algebras, and η : A → X an affine embedding of ⇝ ⊆ W×A×A
into a barycentric weighted order ≻ ⊆ W ×X ×X. Then Pot⇝̃(a) ⊆ Pot≻(η(a)).
In particular, SB≻(η(S)) implies SB⇝̃(S).

Proof. We prove by induction on the derivation that a ⇝̃w b implies η(a) ≻w η(b).
Hence η is an embedding from ⇝̃ to ≻, and we conclude the claim by Theorem 1.
The interesting case is when a = E{{pi : ai}}i∈I ⇝̃

w E{{pi : bi}}i∈I = b, w =
E{{pi : wi}}i∈I ∈ W , and ai ⇝̃

wi bi for all i ∈ I. Then induction hypothesis gives
η(ai) ≻wi η(bi), and since η is affine and ≻ is barycentric, we conclude

η(a) = η
(
E{{pi : ai}}i∈I

)
= E{{pi : η(ai)}}i∈I

≻w E{{pi : η(bi)}}i∈I = η
(
E{{pi : bi}}i∈I

)
= η(b) . ⊓⊔

For any R≥0-valued function h : A → R≥0, the expectation Eh
(
{pi : ai}i∈I

)
:=∑

i∈I pi · h(ai) is affine on D(A) or M(A). Moreover, ≻R≥0
⊆ R≥0 × R∞

≥0 × R∞
≥0

is a barycentric weighted order, as ∀i ∈ I. xi ≥ wi + yi implies∑
i∈I

pi · xi ≥
∑
i∈I

pi · (wi + yi) =
∑
i∈I

pi · wi +
∑
i∈I

pi · yi ,

i.e., E{{pi : xi}}i∈I ≻E{{pi:wi}}i∈I

R≥0
E{{pi : yi}}i∈I . Therefore, R≥0-valued ranking

functions are sound for proving strong boundedness of barycentric R≥0-weighted
ARSs. This generalises to arbitrary partial M-algebras W, provided W∞ forms
an M-algebra which is

– monotone: if ∀i ∈ I. xi ≥ yi, then E{{pi : xi}}i∈I ≥ E{{pi : yi}}i∈I ; and
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– superadditive: E{{pi : xi + yi}}i∈I ≥ E{{pi : xi}}i∈I + E{{pi : yi}}i∈I .

Theorem 6 (ranking functions, soundness). Let W be an M-algebraic
positive monoid such that W∞ is monotone and superadditive. If a weighted
ARS ⇝ ⊆ W × A × A admits an affine ranking function η : A → W∞ with
η(S) ⊆ W, then SB⇝̃(S). In particular, pot⇝̃(a) ≤ η(a) for every a ∈ S.

Proof. To use Theorem 5 we show that the weighted order ≻W ⊆ W×W∞×W∞

is barycentric. So consider xi, yi ∈ W∞ such that xi ≻wi

W yi, i.e., xi ≥ wi + yi for
all i ∈ I, and E({{pi : wi}}i∈I) ∈ W. We have, indeed,

E{{pi : xi}}i∈I ≥ E{{pi : wi + yi}}i∈I ≥ E{{pi : wi}}i∈I + E{{pi : yi}}i∈I ,

by monotonicity and superadditivity. Now Pot⇝̃(a) ⊆ Pot≻W (η(a)) by Theorem 5,
so with Lemma 1 we conclude

pot⇝̃(a) = supPot⇝̃(a) ≤ supPot≻W (η(a)) = pot≻W
(η(a)) = η(a) ∈ W . ⊓⊔

Example 6. Theorem 6 proves that ⇝̃R from Example 4 is strongly bounded on
all distributions using the affine ranking function Eh, where h(HCl) = h(NaOH) =
56.5, and h(NaCl) = h(H2O) = 0; being a ranking function is exemplified by:

Eh({1/2 : HCl, 1/2 : NaOH}) = 1/2 · h(HCl) + 1/2 · h(NaOH) = 56.5

= 56.5 + 1/2 · h(NaCl) + 1/2 · h(H2O) = 56.5 + Eh({1/2 : HCl, 1/2 : NaOH}) .

Example 7. We can prove that ⇝̃G from Example 4 is strongly bounded, by
defining h(n) = 2 and h(n) = 0. Then, for any n ∈ N,

Eh({{1 : n}}) = 2 ≥ 1 + 1/2 · h(n) + 1/2 · h(n+ 1) = 1+Eh({{1/2 : n, 1/2 : n+ 1}}) .

Theorem 6 encompasses the soundness of probabilistic ranking functions [4].
As illustrated in the above example, if there exists h : A → R≥0 such that
h(a) ≥ 1 + Eh(µ) for all a P µ, then Theorem 6 ensures that ⇝P over M(A) is
strongly bounded, i.e., P is strongly AST. They are also complete for proving
strong AST of probabilistic ARSs [4], since pot serves as a ranking function. We
conjecture that affine ranking functions are complete for a reasonably wide class
of barycentric ARSs; however, pot is not necessarily affine in general: note that
pot⇝̃R

({1 : HCl}) = pot⇝̃R
({1 : NaOH}) = 0 in Example 4.

5 Conclusion

In this work, we introduced weighted ARSs, providing a framework for studying
rewriting systems with quantitative properties, particularly those related to
complexity. By assigning uniform weights, weighted ARSs generalize standard
and relative rewriting while enabling the analysis of reduction systems with non-
uniform weights, such as expectation-based properties in probabilistic systems.
To study (strong) boundedness in this setting, we established ranking functions
as a central tool, and have seen how these adapt to weighted term rewrite systems
and barycentric ARSs, encompassing probabilistic reduction systems.

As future work, it would for instance be interesting to enrich the theory with
a study of confluence and related properties.
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