
Hedge automata revisited:
Transforming texts to and from XML

Akihisa Yamada1, Jérémy Dubut1, and Takeshi Tsukada2

1 National Institute of Advanced Industrial Science and Technology (AIST)
2 Chiba University

Abstract. We develop automata-theoretic concepts for hedges, a math-
ematical model for XML documents. First, we define context-free gram-
mars on hedges, and connect our formulation with existing definitions
of regular hedge languages and hedge automata. We also extend regular
automata, push-down automata, and push-down transducers to hedges,
and verify that the well-known correspondences with language classes
in the string case carry over to the hedge setting. Based on the theory,
we introduce a tool TXtruct, which serves as a grammar validator and
transformer for XML and text files.

1 Introduction

XML is a widely used format for structured documents in many applications.
Once documents are written in XML, there are well-established tools to ma-
nipulate them. XML Schema [MTSM+12] is the modern standard for defining
a grammar over XMLs and validating documents against the grammar. XSL
Translation (XSLT) [Kay21] is another standard for transforming XML docu-
ments into other formats, such as browsable HTMLs. As an example application,
Tact [HOT17] is a document analysis tool based on XML. Tact reads structured
documents such as industry standards or product specifications written in an
XML format (see Fig. 1 left), and applies natural language processing techniques
for instance to measure distances between sections. Those XML documents can
be transformed into HTML and viewed by browsers.

While XML and HTML are perfect for machines to manipulate, for hu-
mans they are not easy formats to write or edit. As a consequence, Markdown
(cf. [Leo16]) was invented as a human-friendly format for writing structured or
semi-structured texts. Markdown is basically a plain text file with special gram-
mar for structuring, but it also allows HTML snippets. Such semi-structured
documents are called HTML fragments.

While XML documents are widespread, for their theoretical model hedges,
the authors are aware of only basic foundation in the literature: regular hedge
languages [PQ68] and (bottom-up) hedge automata [Mur99]. Therefore, in this
paper we enrich the theory of hedges by importing well-known notions from au-
tomata theory of strings (words). First, we naturally extend regular and context-
free grammars to hedges. We justify our definition by showing that

<tree>

<title>The First Section</title>

<body>This is a section text.</body>

<tree>

<title>A Subsection</title>

<body>Texts can be

emphasized.</body></tree>

<tree>

<title>Another Subsection</title>

...</tree></tree>

The First Section

This is a section text.

A Subsection

Texts can be
emphasized.

Another Subsection
...

Fig. 1. A simplified snippet of an input XML file for Tact on the left and the same
document in Markdown on the right.

– our regular hedge grammars characterize the existing class of regular hedge
languages defined in the literature;

– the correspondence carries over to the context-free grammars when we nat-
urally extend the existing formulation of regular hedge languages;

– the pumping lemma extends to the context-free hedge languages.

Then we introduce a (top-down) definition of hedge automata, which we prove to
be equivalent to the existing bottom-up definition [Mur99]. We then generalize
to push-down hedge automata, where the top-down nature of our definition
becomes crucial.

Further, we introduce the hedge version of translation grammars and push-
down transducers. We show that hedge relations describable by translation gram-
mars are precisely those describable by push-down hedge transducers.

Based on the theory, we developed a tool TXtruct for defining and validating
grammars over semi-structured documents including XML, Markdown and plain
texts, and at the same time transforming them to other semi-structured formats.
TXtruct is incorporated into Tact, which now supports Markdown files (see
Fig. 1 right) as input and output format. A part of a TXtruct translation file
from Markdown to XML is shown in Fig. 2.

The source code of TXtruct is made available at:

https://github.com/AkihisaYamada/TXtruct

When one is concerned with defining an XML grammar or transforming
XML into other formats, XSD and XSLT are the standard ways. However, since
these standards are not dedicated for defining string grammars or processing
plain texts, they provide only limited support for defining or processing text
contents inside XML elements. In contrast, TXtruct provides dedicated and
uniform support for defining and processing text contents.

When one is concerned with translating Markdown documents into other for-
mats, Pandoc [Dom14] is such a tool. Although Pandoc supports many different
input and output formats, adding a new format requires to implement a new

2

https://github.com/AkihisaYamada/TXtruct

<txtruct method="xml" indent="no">

<input method="html-fragment"/>

<class name="section">

<option level="1"> <match pattern="#␣"/>

<element name="tree">

<call ref="section-body"/>

<call ref="section" level="2" minOccurs="0" maxOccurs="unbounded"/>

</element></option>

<option level="2"> <match pattern="##␣"/>...

Fig. 2. A TXtruct translation rule file for translating Markdown into the XML format.

interface. In contrast, TXtruct is a generic tool, where adding a new format is
defining a hedge translation grammar.

2 Hedge Grammars

We assume certain familiarity with string grammars. We refer to a textbook
[CBM19] for terminologies unexplained in the paper.

Hedges are extension of strings with unary function symbols.

Definition 1 (hedges). A hedge signature is Σ = Σ0 ⊎Σ1, where Σ0 and Σ1

are finite sets of characters and function symbols, respectively. We write Σ(X)
for Σ0 ⊎ Σ1 × X, and f(x) for ⟨f, x⟩ ∈ Σ1 × X. The set H(Σ) of hedges is
defined by the following grammar:

s ::= ε | s s | c | f(s)

where c ranges over Σ0 and f over Σ1.

Example 1. In the following examples we consider characters in the typewriter
font, for space and \n for the new line code are in Σ0; and words in roman
font are in Σ1. We view parts of XML and Markdown of Fig. 1 as the following
hedges:

txml = tree
(
title(w1) body(w2) tree(title(w3) body(w4 em(w5) .))

)
tmd = # w1 \nw2 \n ## w3 \nw4 em(w5) . \n

where w1 = The First Section, w2 = This is a section text., w3 =
A Subsection, w4 = Texts can be , and w5 = emphasized.

Not all hedges are valid HTML or Markdown; e.g., an HTML file must consist
of a single html element, and br elements must not contain inner content. Hence
we introduce grammars on hedges.

3

Definition 2 (hedge grammars). Let D be a set, whose elements are called
non-terminal symbols, disjoint with Σ. The set H(Σ,D) is defined as H(Σ′)
where Σ′

0 = Σ0 ⊎D and Σ′
1 = Σ1. A production rule d → e is a pair of d ∈ D

and e ∈ H(Σ,D). A context-free hedge grammar (CFHG) is G = ⟨Σ,D, d0, R⟩
where d0 ∈ D and R ⊆ D ×H(Σ,D) is a finite set of production rules.

We extend some classes of string grammars to hedges. A CFHG is realtime
if every rule is in one of the forms (1) d → ε, or (2) d → c e1 . . . en, or (3)
d → f(e′) e1 . . . en. It is in Greibach normal form if moreover e′, e1, . . . , en ∈ D,
and is regular if moreover n = 1.

Greibach normal form of hedge grammars extends that of string grammars
with case (3). Moreover, it allows case (1) for any d ∈ D, whereas that of string
grammars allows only for d0 to admit ε in the language. In the hedge setting,
case (1) is crucial for generating hedges such as f(ε).

We may use BNF d ::= e1 | · · · | en to represent multiple rules d →
e1, . . . , d → en. When the set of rules of concern is clear, we may also use the
extended BNF: expressions e∗ and (e1 | · · · | en) represent fresh nonterminals d
with rules d ::= ϵ | e d and d ::= e1 | · · · | en, respectively.

Example 2. In examples, symbols in italic are nonterminals. The hedge gram-
mar Gmd consisting of the following production rules defines the structure of (a
simplified version of) Markdown.

section1 ::= # line\n lines section2
∗

section2 ::= ## line\n lines section3
∗ . . .

line ::= ε | char line | element line lines ::= ε | line\n lines
char ::= | 0 | a | A | · · · element ::= br() | em(lines) | · · ·

Example 3. The following regular hedge grammar describes the (simplified) XML
format that Tact can read:

trees ::= ε | tree(tree) trees
tree ::= title(text) tree ′ tree ′ ::= body(text) end end ::= ε

text ::= ε | text | 0 text | a text | A text | br(end) text | em(text) text | · · ·

Definition 3 (hedge languages). A hedge language is a set of hedges. For
a set R ⊆ D × H(Σ,D) of production rules, e ∈ H(Σ,D), and s ∈ H(Σ), we
define when R ⊢ e : s holds by the following inference rules:

R ⊢ ε : ε

R ⊢ e : s R ⊢ e′ : s′

R ⊢ e e′ : s s′
R ⊢ e : s

R ⊢ d : s
if d → e

R ⊢ c : c

R ⊢ e : s

R ⊢ f(e) : f(s)

We define the hedge language generated by a CFHG G = ⟨Σ,D, d0, R⟩ as
L(G) := {s ∈ H(Σ) | R ⊢ d0 : s}. A hedge language is context-free if it is gen-
erated by a CFHG.

4

Theorem 1 (Greibach normal form). Every context-free hedge language is
generated by a CFHG in Greibach normal form.

This theorem will be proved more generally in Section 5.

3 Correspondence with Existing Formulations

In this section we justify our definition of regular hedge grammars by showing
that a hedge language is generated by a regular hedge grammar if and only if
it is a regular hedge language [PQ68]. We also show that this equivalence holds
when replacing regularity by context-freeness. This suggests pumping lemmas for
languages generated by regular or context-free hedge grammars. Finally, we show
that the balanced-string representation [MT06] of context-free hedge languages
is strictly less expressive than context-free string languages.

3.1 Levelwise Definition of Hedge Languages

Pair and Quere [PQ68] defined regular hedge languages via regular string lan-
guages. We extend their definition also to context-free languages. First, their
formulation considers truncation of hedges into the string of the root symbols.

Definition 4 (root word). The root word s ∈ Σ∗ of a hedge s ∈ H(Σ) is
defined by ε = ε; c s = c s if c ∈ Σ0; and f(s) s′ = f s′ if f ∈ Σ1.

Their definition then considers the set of root words that can occur under each
function symbol. We formulate the notion concisely using contexts.

Definition 5 (f-productions). A hedge context C is a hedge, where a spe-
cial character □ occurs exactly once. We write C[s] for the hedge obtained by
replacing □ by s. Given f ∈ Σ1, the set Pf (s) ⊆ Σ∗ of f -productions of a hedge
s ∈ H(Σ) is defined by Pf (s) :=

{
s′

∣∣ ∃C. s = C[f(s′)]
}
.

Definition 6 (grammatical language). Given a family L- = {Lx}x∈Σ1∪{ε}
of string languages over Σ, the grammatical (hedge) language induced by L- is:

G(L-) := {s ∈ H(Σ) | s ∈ Lε ∧ ∀f ∈ Σ1. Pf (s) ⊆ Lf}

We are not yet there; Pair and Quere’s formulation further allows to tran-
scribe signatures used in grammatical languages into the target signatures.

Definition 7 (transcription). A transcription µ : Σ′ → Σ over hedge signa-
tures Σ′ to Σ is a pair of mappings µ0 : Σ′

0 → Σ0 and µ1 : Σ′
1 → Σ1. We write

cµ for µ0(c) and fµ for µ1(f). Given s ∈ H(Σ′, D), we define µ(s) ∈ H(Σ,D)
by µ(ε) = ε, µ(c s) = cµ µ(s), µ(f(s) s′) = fµ(µ(s))µ(s′), and µ(d s) = dµ(s).

Definition 8 (hedge languages [PQ68]). We say that a hedge language H ⊆
H(Σ) is regular (resp. context-free) if there are hedge signature Σ′, transcription
µ : Σ′ → Σ, and family L- = {Lx}x∈Σ′

1∪{ε} of regular (resp. context-free)

languages such that H = µ(G(L-)), i.e., {µ(s) | s ∈ G(L-)}.

5

In [PQ68], regular hedge languages are actually defined as those languages
that are recognized by binoids, and it is then proved that this is equivalent to
the above definition. Another equivalent characterization proved there is that the
class of regular hedge languages is the smallest class containing finite languages
and closed under several operations such as boolean operations, concatenation,
iteration, and transcriptions (similar to Kleene’s theorem).

The following theorem justifies our terminology based on hedge grammars.

Theorem 2. A hedge language is context-free (regular) if and only if it is gen-
erated by a context-free (regular) hedge grammar.

Proof.

(⇒) Consider a hedge language given by transcription µ : Σ′ → Σ and family
{Lx}x∈Σ′

1∪{ε} of context-free (regular) string languages. Suppose that each

Lx is generated by a string grammar Gx = ⟨Σ′, Dx, d0,x, Rx⟩ which is in
Greibach normal form (regular). Without loss of generality, we assume Dx

are pairwise disjoint. We define µ̂ : Σ′ → H(Σ,D) by µ̂(c) = cµ and µ̂(f) =
fµ(d0,f), and extend naturally on (Σ′ ∪ D)∗. Now consider CFHG Gµ =
⟨Σ,D, d0,ε, R

µ⟩ defined by D =
⋃

x∈Σ′
1∪{ε} Dx and

Rµ = {d → µ̂(e) | d → e ∈ Rx, x ∈ Σ′
1 ∪ {ε}}

Note that Gµ is regular if all Gx are regular. We first prove

Rx ⊢ d : w and Rµ ⊢ µ̂(w) : s implies Rµ ⊢ d : s (1)

by induction on the former derivation. By the assumption on Gx, we must
have y ∈ Σ′, d → y d1 . . . dn ∈ Rx, and w = y w1 . . . wn such that Rx ⊢ di : wi

for each i. With the second premise, we know s = s′ s1 . . . sn such that
Rµ ⊢ µ̂(y) : s′ and Rµ ⊢ µ̂(wi) : si. So by induction hypothesis (IH) we have
Rµ ⊢ di : si. We conclude Rµ ⊢ d : s′ s1 . . . sn with d → µ̂(y) d1 . . . dn ∈ Rµ.
Let us prove now that µ(G(L-)) = L(Gµ).
(⊆) Let s ∈ µ(G(L-)), so there is s′ ∈ G(L-) with µ(s′) = s. We show

s ∈ L(Gµ), that is, Rµ ⊢ d0,ε : s. By s′ ∈ G(L-) we know Rε ⊢ d0,ε : s′,
so thanks to (1), it suffices to show Rµ ⊢ µ̂(s′) : s. We prove that Rµ ⊢
µ̂(s′′) : µ(s′′) for any subhedge s′′ of s′ by induction. Let s′′ = t1 . . . tn
with t1, . . . , tn ∈ Σ′(H(Σ′)). We conclude by showing Rµ ⊢ µ̂(ti) : µ(ti)
for all i. If ti ∈ Σ′

0, then µ̂(ti) = µ(ti) and we are done. Let ti = f(t′).
Then µ̂(ti) = µ̂(f) = fµ(d0,f) and µ(ti) = fµ(µ(t′)). By IH Rµ ⊢ µ̂(t′) :
µ(t′), and since f(t′) is a subhedge of s′ ∈ G(L-), we know Rf ⊢ d0,f : t′.
By (1) we get Rµ ⊢ d0,f : µ(t′) and we are done.

(⊇) We prove that, if Rµ ⊢ d : s for x ∈ Σ′
1 ∪ {ε} and d ∈ Dx, then there

exists s′ ∈ H(Σ′) such that s = µ(s′), Rx ⊢ d : s′, and Pf (s
′) ⊆ Lf .

This is sufficient, since if s ∈ L(Gµ), i.e., Rµ ⊢ d0,ε : s, then we obtain s′

such that s = µ(s′), Rε ⊢ d0,ε : s′ and Pf (s
′) ⊆ Lf , i.e., s

′ ∈ G(L-), and
thus s ∈ µ(G(L-)). We prove the claim by induction on the derivation of
Rµ ⊢ d : s. The following three cases are possible:

6

– d → ε ∈ Rx and s = ε. Then s′ = ε works.
– d → c d1 . . . dm ∈ Rx, s = cµ s1 . . . sm, and Rµ ⊢ di : si. By IH

we obtain s′1, . . . , s
′
m such that Rx ⊢ di : s′i and si = µ(s′i). Thus

s′ = c s′1 . . . s
′
m works.

– d → f d1 . . . dm ∈ Rx, s = fµ(t) s1 . . . sm, Rµ ⊢ d0,f : t and Rµ ⊢
di : si. By IH we obtain t′ such that t = µ(t′) and Rf ⊢ d0,f : t′,
i.e., t′ ∈ Lf , which is needed as t′ ∈ Pf (s

′); and s′1, . . . , s
′
m such that

Rx ⊢ di : s′i and si = µ(s′i). By s′ = f(t′) s′1 . . . s
′
m we conclude.

(⇐) Let G = ⟨Σ,D, d0, R⟩ be a hedge grammar in Greibach normal form. We
view Σ(D) as a hedge signature, whose characters are original characters
and function symbols are of form f(d). Transcription µ : Σ(D) → Σ is given
by cµ = c and f(d)

µ
= f . Then we consider the family {Gx}x∈Σ(D)1∪{ε}

of string grammars ⟨Σ(D), D, d0,x, R⟩, where d0,ε = d0 and d0,f(d) = d.
Note that they are regular if G is regular. Consider the hedge grammar
Gµ obtained from {Gx}x as in the (⇒) direction above. Observe that this
grammar is exactly the same as G except that the non-terminals have been
duplicated. It is easy to see that µ(G(L(G-))) = L(Gµ) = L(G). ⊓⊔

This correspondence with string languages at each level allows us to prove a
pumping lemma for regular and context-free hedge languages. In the following,
we formulate one in the case of context-free languages.

Lemma 1. Let H ⊆ H(Σ) be context free. Then there exists p ∈ N such that
if C[s] ∈ H and |s| ≥ p, then s has a decomposition s = s1 s2 s3 s4 s5 satisfying
|s2 s3 s4| ≤ p, |s2|+ |s4| > 0, and C[s1 s

m
2 s3 s

m
4 s5] ∈ H for any m ∈ N.

Proof. By Theorem 2, there are a signature Σ′, family L- = {Lx}x∈Σ′
1∪{ε} of

context-free string languages over Σ′, and transcription µ : Σ′ → Σ such that
µ(G(L-)) = H. For each x ∈ Σ′ ∪ {ε}, the pumping lemma (see [BPS61]) on Lx

gives px ∈ N such that every word w ∈ Lx with px ≤ |w| has a decomposition
w = w1w2w3w4w5 with |w2w3w4| ≤ px, |w2|+|w4| > 0, and w1w

m
2 w3w

m
4 w5 ∈ Lx

for any m ∈ N. Define p = max{px | x ∈ Σ′
1 ∪ {ε}}.

Consider now s with |s| ≥ p and C[s] ∈ H = µ(G(L-)). Hence there exists
t′ ∈ G(L-) such that C[s] = µ(t′), and hence t′ = C ′[s′] with µ(C ′) = C and
µ(s′) = s. Let x = ε if C ′ = □ and x = f ′ if C ′ = C ′′[f ′(□)]. Since C ′[s′] ∈ G(L-),
we know s′ ∈ Lx. Moreover

∣∣s′∣∣ = |s| ≥ p ≥ px. So by the pumping lemma in

Lx, we decompose s′ = w1w2w3w4w5 as above. So let s′ = s′1 s
′
2 s

′
3 s

′
4 s

′
5 with

s′i = wi, and let si = µ(s′i).
Now we prove C[s1 s

m
2 s3 s

m
4 s5] ∈ H. By construction, it means to prove that

t′m := C ′[s′1 (s
′
2)

m s′3 (s
′
4)

m s′5] is in G(L-). This holds because Py(t
′
m) ⊆ Py(t

′) ⊆
Ly if y ̸= x and Px(t

′
m) ⊆ Px(t

′) ∪ {w1w
m
2 w3w

m
4 w5} ⊆ Lx since t′ ∈ G(L-) and

by the pumping lemma in Lx. ⊓⊔

3.2 Balanced-String Representation

Here we consider representation of hedges as balanced strings over paired al-
phabets [MT06]. Given a hedge signature Σ, we define the paired alphabet by

7

Σ̂ = Σ0∪
{
f́ , f̀

∣∣ f ∈ Σ1

}
. The string representation ŝ ∈ Σ̂∗ of a hedge s ∈ H(Σ)

is defined as follows:

ε̂ = ε ŝ1 s2 = ŝ1 ŝ2 ĉ = c f̂(s) = f́ ŝ f̀

Given a hedge language H, we let Ĥ = {ŝ | s ∈ H}.

Theorem 3. Let H ⊆ H(Σ) be a context-free hedge language. Then Ĥ ⊆ Σ̂∗ is
a context-free string language.

Proof. Let H be generated by a hedge grammar G = ⟨Σ,D, d0, R⟩ in Greibach

normal form. Define the context-free string grammar Ĝ =
〈
Σ̂,D, d0, R̂

〉
by

R̂ = {d → ê | d → e ∈ R}

where -̂ is extended with d̂ = d. Let us prove that L(Ĝ) = Ĥ.

(⊆) We show by induction on the derivation that R̂ ⊢ d : w implies R ⊢ d : s
for some hedge s with ŝ = w. Three cases are possible:
– d → ε ∈ R and w = ε.
– d → c d1 . . . dn ∈ R, w = cw1 . . . wn, and R̂ ⊢ di : ci for each i.
– d → f(d′) d1 . . . dn ∈ R, w = f́w′f̀ w1 . . . wn, R̂ ⊢ d′ : w′, and R̂ ⊢ di : wi

for each i.
We only consider the last case, as other cases are trivial or similar. Induction
hypothesis gives s′, s1, . . . , sn such that ŝ′ = w′, R ⊢ d′ : s′, ŝi = wi, R ⊢ di :
si for each i. By letting s = f(s′) s1 . . . sn we have ŝ = w, and we conclude
R ⊢ d : s by an obvious derivation.

(⊇) It is enough to prove by induction on the derivation that R ⊢ d : s implies

R̂ ⊢ d : ŝ. Three cases are possible:
– d → ε ∈ R and s = ε.
– d → c d1 . . . dn, s = c s1 . . . sn, and R ⊢ di : si for each i.
– d → f(d′) d1 . . . dn, s = f(s′) s1 . . . sn, R ⊢ d′ : s′, and R ⊢ di : si.

We only consider the last case as the other cases are trivial or similar. By
IH we have R̂ ⊢ d′ : ŝ′ and R̂ ⊢ di : ŝi. Since d → f́ d′f̀ d1 . . . dn ∈ R, we
conclude R̂ ⊢ d : ŝ. ⊓⊔

The converse of the above theorem does not hold.

Proposition 1. There is a hedge language H ⊆ H(Σ) such that Ĥ ⊆ Σ̂∗ is
context free but H is not context free.

Proof. A counterexample is given by the following string grammar:

W ::= f́X X ::= f̀ | aX a | bX b

where Σ0 = {a, b} and Σ1 = {f}. This grammar generates the string represen-
tations of hedges from {f(w)wop | w ∈ Σ∗

0}, where wop is the reverse of w. This
hedge language is not context-free: Suppose on the contrary it is context-free. By
Lemma 1 on f(w)wop with w long enough, we are able to pump inside f, that is,
we can decompose w = w1w2w3w4w5 with |w2w4| > 0 such that f(w1w3w5)w

op

would also be in L. This is impossible because |w1w3w5| < |w|. ⊓⊔

8

Although the class of hedge languages with context-free string representations
differs from the class of context-free hedge languages, they share an interesting
property: languages in these classes are “regular in depth” (though they can be
non-regular in width). This contrasts with another context-free notion, context-
free tree languages [Rou69], which can be “non-regular in depth”.

We formalize the claim. The path language path(s) of a hedge s is defined by

path(ε) = path(c) = {ε} path(s1 s2) = path(s1) ∪ path(s2)

path(f(s)) = {fp | p ∈ path(s)}.

The path language path(H) of a hedge language H is the union
⋃

s∈H path(s) of
paths of hedges s ∈ H.

Lemma 2. For a hedge language H, if Ĥ is context free, path(H) is regular.

Proof. We explicitly construct a grammar for path(H), based on the analysis in
[MT06] of context-free string grammars that always generates matched tags. ⊓⊔

As a consequence, there exists a hedge language generated by a context-free tree
grammar whose string representation is not context free.

4 (Push-Down) Hedge Automata

Here we present our definitions of regular and push-down hedge automata. Given
a set X, we write X? for X ⊎{ε}. For simplicity, we do not assume a set of final
states, but extend Q to Q? and use ε as the unique final state.

Definition 9 (hedge automaton). A hedge automaton is A = ⟨Σ,Q, q0, δ⟩
where q0 ∈ Q is the initial state, and δ ⊆ Q×Σ(Q)?×Q? is the set of transition
rules. We denote a transition rule ⟨q, α, q′⟩ ∈ δ by q

α−→ q′.

We formulate runs of hedge automata as a transition relation over configu-
rations. Unlike the string case, a configuration is not just the pair of the current
state and remaining input (Q×H(Σ)), but additionally maintain a worklist in
(Q×H(Σ))∗, assigning parts of input to states.

Definition 10 (runs). Given a hedge automaton A = ⟨Σ,Q, q0, δ⟩, we define
binary relation →δ over Q×H(Σ)× (Q×H(Σ))∗ as the least relation such that:

1. q
ε−→ q′ ∈ δ implies ⟨q, s,W ⟩ →δ ⟨q′, s,W ⟩;

2. q
c−→ q′ ∈ δ implies ⟨q, c s,W ⟩ →δ ⟨q′, s,W ⟩;

3. q
f(q′)
−−−→ q′′ ∈ δ implies ⟨q, f(s) s′,W ⟩ →δ ⟨q′, s, ⟨q′′, s′⟩W ⟩;

4. ⟨ε, ε, ⟨q, s′⟩W ⟩ →δ ⟨q, s′,W ⟩.

We say that A accepts a hedge s ∈ H(Σ) if ⟨q0, s, ε⟩ →∗
δ ⟨ε, ε, ε⟩. We write L(A)

for the set of hedges that A accepts, and say that A recognizes the language L(A).

9

Item 1 of Definition 10 is the ε-transition: it moves states without touching
the input (and the worklist). Item 2 is the character transition, which reads a
character from the input and moves states. Item 3 is specific for hedge automata:
it reads the function symbol f from the current input f(s) s′, moves on to read
the argument s in state q′, and assigns the remaining s′ to state q′′ in the
worklist. Item 4 tells that if the current input was successfully read, and the
worklist assigns s′ to q′, then one should proceed to this task.

Example 4. Consider a hedge automaton A = ⟨Σ, {q0, q1, q2}, q0, δ⟩, where Σ0 =
{a, b, . . .}, Σ1 = {tree, title, . . .}, and δ consists of the following transition rules:

q0
ε−→ ε q0

tree(q1)−−−−−→ q0 q1
title(q2)−−−−−→ q3 q3

body(q2)−−−−−→ q0

q2
ε−→ ε q2

em(q2)−−−−→ q2 q2
a−→ q2 q2

b−→ q2 . . .

A accepts the hedge txml of Example 1, as illustrated by the following run:

⟨q0, txml, ε⟩ = ⟨q0, tree(title(w1) body(w2) tree(. . .)), ε⟩
→δ ⟨q1, title(w1) body(w2) tree(. . .), ⟨q0, ε⟩⟩
→δ ⟨q2, w1, ⟨q3,body(w2) tree(. . .)⟩ ⟨q0, ε⟩⟩
→∗

δ ⟨ε, ε, ⟨q3,body(w2) tree(. . .)⟩ ⟨q0, ε⟩⟩
→δ ⟨q3,body(w2) tree(. . .), ⟨q0, ε⟩⟩
→∗

δ ⟨q0, tree(. . .), ⟨q0, ε⟩⟩ →∗
δ ⟨ε, ε, ⟨q0, ε⟩⟩ →δ ⟨q0, ε, ε⟩ →δ ⟨ε, ε, ε⟩

As in the string case, hedge automata characterize regular hedge languages.

Theorem 4. A hedge language is regular if and only if it is recognized by a
hedge automaton.

Proof. We can assume that a hedge automaton contains no transition rule of
form q

α−→ ε for α ∈ Σ(Q): One can replace such rules by q
α−→ ϵ, where ϵ is a

fresh state with transition rule ϵ
ε−→ ε. Then, the following ϕ is bijective from

regular hedge grammars to such hedge automata: For regular hedge grammar
G = ⟨Σ,D, d0, R⟩, hedge automaton ϕ(G) = ⟨Σ,D, d0, δ⟩ is defined by

δ :=
{
d

ε−→ ε
∣∣ d → ε ∈ R

}
∪
{
d

α−→ d′
∣∣ d → αd′ ∈ R

}
It remains to show L(G) = L(ϕ(G)).

(⊆) We show R ⊢ d : s implies ⟨d, s,W ⟩ →∗
δ ⟨ε, ε,W ⟩ for any W by induction

on the derivation of R ⊢ d : s. We have the following cases:

1. d → ε ∈ R and R ⊢ ε : s. Then s = ε, d
ε−→ ε ∈ δ, and thus ⟨d, s,W ⟩ →δ

⟨ε, ε,W ⟩.
2. d → c d′ ∈ R and R ⊢ c d′ : s. Then d

c−→ d′ ∈ δ, s = c s′ and R ⊢ d′ : s′.
Thus ⟨d, s,W ⟩ →δ ⟨d′, s′,W ⟩ and by IH ⟨d′, s′,W ⟩ →∗

δ ⟨ε, ε,W ⟩.

10

3. d → f(d′) d′′ ∈ R and R ⊢ f(d′) d′′ : s. Then s = f(s′) s′′, R ⊢ d′ : s′,
and R ⊢ d′′ : s′′. Thus

⟨d, s,W ⟩ →δ ⟨d′, s′, ⟨d′′, s′′⟩W ⟩
→∗

δ ⟨ε, ε, ⟨d′′, s′′⟩W ⟩ by IH

→δ ⟨d′′, s′′,W ⟩
→δ ⟨ε, ε,W ⟩ by IH

(⊇) We show ⟨d, s,W ⟩ →n
δ ⟨ε, ε,W ⟩ implies R ⊢ d : s by induction on n.

– n = 0: Then s = ε, d = ε and hence R ⊢ d : s.
– d

c−→ d′ ∈ δ, s = c s′, and ⟨d, s,W ⟩ →δ ⟨d′, s′,W ⟩ →n−1
δ ⟨ε, ε,W ⟩: By

IH we have R ⊢ d′ : s′ and thus R ⊢ c d′ : c s′. Since d → c d′ ∈ R, we
conclude R ⊢ d : s.

– d
f(d′)
−−−→ d′′ ∈ δ, s = f(s′) s′′, and

⟨d, s,W ⟩ →δ ⟨d′, s′, ⟨d′′, s′′⟩W ⟩
→k

δ ⟨ε, ε, ⟨d′′, s′′⟩W ⟩ →δ ⟨d′′, s′′,W ⟩ →m
δ ⟨ε, ε,W ⟩

with k +m+ 2 = n. Then d → f(d′) d′′ ∈ R. By IH we have R ⊢ d′ : s′

and R ⊢ d′′ : s′′. Therefore R ⊢ d : f(s′) s′′ = s. ⊓⊔

While our hedge automaton works top-down, that is, it reads the hedge from
root to leaf, there is a bottom-up equivalent introduced by Murata [Mur99]:

Definition 11. A Murata hedge automaton is A = ⟨Σ,Q, ι, F,∆⟩ where ι ⊆
Σ0 × Q (initial relation), F ⊆ Q∗ is a regular set (of final states), and ∆ ⊆
Q×Σ1×Q∗ (transition relation) such that {w ∈ Q∗ | ⟨q, f, w⟩ ∈ ∆} is a regular
language for each q ∈ Q and f ∈ Σ1. The relation →A over H(Σ,Q) is defined as
the congruence generated by c →A q if ⟨c, q⟩ ∈ ι and f(w) →A q if ⟨q, f, w⟩ ∈ ∆.
We say that a hedge s ∈ H(Σ) is accepted by A if s →∗

A w for some w ∈ F .
The language L(A) of A is defined as the set of hedges accepted by A.

Theorem 5. A hedge language is recognized by a hedge automaton iff it is rec-
ognized by a Murata automaton.

Proof. Thanks to Theorem 4 and Theorem 2, a hedge language is recognized
by a hedge automaton iff it is regular. We prove that the latter is equivalent to
being recognized by a Murata automaton.

(⇒) Consider a transcription µ : Σ′ → Σ and family {Lx}x∈Σ′
1∪{ε} of reg-

ular languages. Define Murata automaton A = ⟨Σ,Σ′, ι, Lε, ∆⟩ by ι =
{⟨cµ, c⟩ | c ∈ Σ′

0} and ∆ = {⟨f, fµ, w⟩ | f ∈ Σ′
1, w ∈ Lf}. It is easy to

see that µ(G(L-)) = L(A).
(⇐) Consider a Murata automaton A = ⟨Σ,Q, ι, F,∆⟩. Define signature Σ′

by Σ′
i = Q × Σi, transcription µ : Σ′ → Σ by ⟨q, x⟩µ = x, and family

{Lx}x∈Σ′
1∪{ε} by Lε = F and L⟨q,f⟩ = {⟨q1, f1⟩ . . . ⟨qn, fn⟩ | ⟨q, f, q1 . . . qn⟩ ∈

∆}, which are regular. It is easy to prove that L(A) = α(G(L-)). ⊓⊔

11

Compared to Murata’s formulation, our top-down definition of hedge au-
tomata is more friendly for extension to push-down hedge automata and hedge
transducers. Here we introduce a hedge version of stateless push-down automata.
As in the string case, the difference to the hedge automata is that the target
of each transition rule becomes a sequence of states (stack symbols). Similarly,
each configuration has a sequence of states instead of a single state, replacing
Q? by Q∗.

Definition 12 (push-down hedge automaton). A push-down hedge au-
tomaton (PDHA) is A = ⟨Σ,Q, q0, δ⟩ where δ ⊆ Q × Σ(Q)? × Q∗. We define
binary relation →δ over Q∗ ×H(Σ)× (Q∗ ×H(Σ))∗ by

1. q
ε−→ v ∈ δ implies ⟨q w, s,W ⟩ →δ ⟨v w, s,W ⟩;

2. q
c−→ v ∈ δ implies ⟨q w, c s,W ⟩ →δ ⟨v w, s,W ⟩;

3. q
f(q′)
−−−→ v ∈ δ implies ⟨q w, f(s) s′,W ⟩ →δ ⟨q′, s, ⟨v w, s′⟩W ⟩;

4. ⟨ε, ε, ⟨w, s⟩W ⟩ →δ ⟨w, s,W ⟩.

As in the regular case, A accepts s ∈ H(Σ) if ⟨q0, s, ε⟩ →∗
δ ⟨ε, ε, ε⟩. The language

L(A) that A recognizes is defined in the same way.

Theorem 6. A hedge language is context-free iff it is recognized by a PDHA.

Similar to Theorem 1, this theorem will be proved in the more general context
of transducers in the next section.

5 Hedge Transducers

Here we define a hedge version of translation grammars and more operational
push-down hedge transducers, and show that they are equally expressive. In this
section we assume two signatures Σ i and Σo for input and output, and define
the signature Σ by Σi =

{
f i

∣∣ f ∈ Σ i
i

}
∪{fo | f ∈ Σo

i } for i = 0, 1, where ‘i’ and
‘o’ are used to distinguish where the symbols are from.

Definition 13 (hedge translation grammars). A hedge translation gram-
mar (HTG) is G =

〈
Σ i, Σo, D, d0, R

〉
, where d0 ∈ D, and R ⊆ D ×H(Σ,D) is

a finite set of translation rules. Given e ∈ H(Σ,D), s ∈ H(Σ i) and t ∈ H(Σo),
we define R ⊢ e : s ↪→ t by the following inference rules:

R ⊢ ε : ε ↪→ ε

R ⊢ e : s ↪→ t R ⊢ e′ : s′ ↪→ t′

R ⊢ e e′ : s s′ ↪→ t t′
R ⊢ e : s ↪→ t
R ⊢ d : s ↪→ t

if d → e ∈ R

R ⊢ ci : c ↪→ ε

R ⊢ e : s ↪→ t

R ⊢ f i(e) : f(s) ↪→ t R ⊢ co : ε ↪→ c

R ⊢ e : s ↪→ t

R ⊢ fo(e) : s ↪→ f(t)

We say G generates the hedge relation ↪→G ⊆ H(Σ i) × H(Σo), where s ↪→G

t :⇐⇒ R ⊢ d0 : s ↪→ t. A context-free hedge relation is such a relation that is
generated by some hedge translation grammar.

12

Example 5. Consider hedge translation grammar Gmd→xml consisting of the fol-
lowing translation rules:

section1 ::= #i i treeo(titleo(line \ni) bodyo(lines) section2 ∗)

section2 ::= #i #i i treeo(titleo(line \ni) bodyo(lines) section3 ∗) · · ·

line ::= ε | char line | element line lines ::= ε | line \ni lines
element ::= bri() bro() | emi(emo(lines)) | · · · char ::= i o | ai ao | Ai Ao | · · ·

Following derivation illustrates how Gmd→xml translates the hedge tmd of Exam-
ple 1 to hedge txml.

R ⊢ #i : # ↪→ ε R ⊢ i : ↪→ ε

R ⊢ #i i : # ↪→ ε

...
R ⊢ line : w1 ↪→ w1 R ⊢ \ni : \n ↪→ ε

R ⊢ line \ni : w1 \n ↪→ w1

...
R ⊢ ... : ... ↪→ ...

R ⊢ titleo(line \ni)... : w1 \n... ↪→ title(w1)...

R ⊢ treeo(titleo(line \ni)...) : w1 \n... ↪→ tree(title(w1)...)

R ⊢ #i i treeo(titleo(line \ni)...) : # w1 \n... ↪→ tree(title(w1)...)

R ⊢ section1 : # w1 \n... ↪→ tree(title(w1)...)

In order to translate a hedge into another, it is not enough to check if s ↪→G t
holds for given s and t, but one must compute such t (if exists) from given
s. Therefore we provide such semantics using (push-down) hedge transducers.
Compared to the automata case, configurations additionally maintain the cur-
rent output, and worklist may contain tasks for output.

Definition 14 (push-down hedge transducers). A push-down hedge trans-
ducer (PDHT) is T =

〈
Σ i, Σo, Q, q0, δ

〉
where δ ⊆ Q × Σ(Q)? × Q∗. The

relation →δ over configurations in Q∗ × H(Σ i) × H(Σo) × W∗, where W =
(Q×H(Σ i)) ⊎ (Σo ×H(Σo)×Q∗), is defined as follows:

1. q
ε−→ v ∈ δ implies ⟨q w, s, t,W ⟩ →δ ⟨v w, s, t,W ⟩;

2. q
ci−→ v ∈ δ implies ⟨q w, c s, t,W ⟩ →δ ⟨v w, s, t,W ⟩;

3. q
f i(q′)
−−−→ v ∈ δ implies ⟨q w, f(s) s′, t,W ⟩ →δ ⟨q′, s, t, ⟨v w, s′⟩W ⟩;

4. ⟨ε, ε, t, ⟨w, s⟩W ⟩ →δ ⟨w, s, t,W ⟩;
5. q

co−→ v ∈ δ implies ⟨q w, s, t,W ⟩ →δ ⟨v w, s, t c,W ⟩;
6. q

fo(q′)
−−−→ v ∈ δ implies ⟨q w, s, t,W ⟩ →δ ⟨q′, s, ε, ⟨f, t, v w⟩W ⟩;

7. ⟨ε, s, t′, ⟨f, t, w⟩W ⟩ →δ ⟨w, s, t f(t′),W ⟩.

The first four items correspond to those of push-down hedge automata, with ad-
ditional argument t for the current output. Item 5 specifies to output a character
at the end of the current output. Item 6 specifies to output a function symbol
f ; to specify how to output the arguments, it tells to move to state q′ with fresh
output, and push the task to write the resulting output as the argument of f ,
append to the previous output t, and proceed to the state stack v w. Item 7
specifies to do so when reaching the final state ε.

13

In the rest of the section, we prove that push-down hedge transducers char-
acterize the context-free hedge relations. As in the string case, we first transform
HTGs into Greibach normal forms. The classes of hedge grammars defined in
Definition 2 are extended to hedge translation grammars in the obvious manner.

Theorem 7 (Greibach normal form). Every HTG G has an equivalent
Greibach normal form G′, i.e., ↪→G = ↪→G′ .

Before the main transformation, we need to resolve the structure of grammars
due to the hedge structures.

Definition 15 (shallow). We say a context-free hedge (translation) grammar
is shallow if all occurrences of f(e) in the rules satisfy e ∈ D.

Lemma 3. Every HTG has an equivalent shallow HTG.

Proof. Let G =
〈
Σ i, Σo, D, d0, R

〉
. We prove by induction on nG, the number

of occurrences of f(e) with e /∈ D in the rules R. If nG = 0, then G is already
shallow. Otherwise, pick one such f(e) and a fresh nonterminal de. We define
G′ =

〈
Σ i, Σo, D ⊎ {de}, d0, R′〉, where R′ consists of the rules in R where all

occurrences of f(e) are replaced by f(de), and additionally contains de → e. It
is easy to see that G′ generates the same relation as G, and nG′ < nG. Hence,
we are done by IH. ⊓⊔

The main step towards Greibach normal forms is the transformation to a
realtime form. This transformation can be done as in the string case, but for
completeness we present one.

Lemma 4. Every HTG has an equivalent realtime shallow HTG.

Proof. Thanks to Lemma 3, we consider shallow HTG G =
〈
Σ i, Σo, D, d0, R

〉
.

Index nonterminals3 D =
{
d0, . . . , d|D|−1

}
and let L(R) = {d′ | d → d′e ∈ R}.

We inductively construct Ri that satisfies invariant L(Ri) ⊆
{
di, . . . , d|D|−1

}
.

Hence, R|D| is realtime, and the following transformations trivially preserve shal-
lowness.

For the base case, just take R0 = R. For the inductive case, consider Ri

satisfying the invariant. We first remove rules of form d → di e with d ̸= di.
Denote the set of such rules by X = {d → di e ∈ Ri | d ̸= di}, and define

R′ = R \X ∪ {d → e′e | d → di e ∈ X, di → e′ ∈ R}

Note that R′ maintains the invariant. Moreover, d → di e ∈ R′ only if d =
di. Denote the set of those rules by X ′ = {di → di e ∈ R′}. Let d′i be a fresh
nonterminal, and define

3 For notational simplicity we index the initial nonterminal d0 by 0, but obviously
there is no need to do so.

14

R′′ = R′ \X ′ ∪ {di → e d′i | di → e ∈ R′ \X ′} ∪
{d′i → e, d′i → e d′i | di → di e ∈ R′, e ̸= ε}

The equivalence of R′′ and R′ is proved in the same way as in the string case.
Note that the invariant may fail: d′i → dj e ∈ R′′ if di → di dj e ∈ R′, but now
we can easily remove such rules. Let X ′′ = {d′i → dj e ∈ R′′ | j ≤ i} and define

Ri+1 = R′′ \X ′′ ∪ {d′i → e′e | d′i → dj e ∈ X ′′, dj → e′ ∈ R′′}

It is easy to see that L(Ri+1) = L(Ri) \ {di} ⊆
{
di+1, . . . , d|D|−1

}
. ⊓⊔

Proof (of Theorem 7). Thanks to Lemma 4, we only have to consider a realtime
shallow HTG G =

〈
Σ i, Σo, D, d0, R

〉
. Let X(R) denote the rules in R that do

not satisfy the condition of Greibach. If X(R) = ∅, then G is already in Greibach
normal form. Otherwise, pick d → e ∈ X(R). Due to the assumptions, e is of
form αβ1 . . . βn, where α ∈ Σ(D) and βi ∈ Σ(D) ∪ D. Let di be βi if βi ∈ D
and a fresh nonterminal otherwise. Define

R′ = R \ {d → e} ∪ {d → αd1 . . . dn} ∪ {di → βi | i ≤ n, βi /∈ D}

It is clear to see R ⊢ e′ : s ↪→ t ⇐⇒ R′ ⊢ e′ : s ↪→ t. We see X(R′) ⊊ X(R):
Since G is shallow, βi /∈ D implies βi ∈ Σ(D). Hence, repeating the process we
reach to a Greibach normal form that generates the same hedge relation. ⊓⊔

We remark that shallowness is necessary for the above proof to work. If G is
realtime but not shallow, then R′ contains di → βi for complex βi, which is not
necessarily realtime.4

We arrive at the final result of the section:

Theorem 8. A hedge relation is context free iff it is recognized by a PDHT.

Proof. Observe that the following mapping ϕ is bijective between Greibach nor-
mal forms and PDHTs: For translation grammar G =

〈
Σ i, Σo, D, d0, R

〉
in

Greibach normal form, PDHT ϕ(G) =
〈
Σ i, Σo, D, d0, δ

〉
is defined by

δ :=
{
d

ε−→ ε
∣∣ d → ε ∈ R

}
∪
{
d

α−→ d1 . . . dn
∣∣ d → αd1 . . . dn ∈ R

}
where α ranges over Σ(D). We conclude by showing R ⊢ d : s ↪→ t ⇐⇒
⟨d, s, ε, ε⟩ →∗

δ ⟨ε, ε, t, ε⟩.

(⇒) We show more generally that R ⊢ d : s ↪→ t implies ℓ = ⟨dw, s u, v,W ⟩ →∗
δ

⟨w, u, v t,W ⟩ = r for any w, u, v, and W , by induction on the derivation of
R ⊢ d : s ↪→ t. We consider the following cases:

– d → ε ∈ R and R ⊢ ε : s ↪→ t. Then s = t = ε and d
ε−→ ε ∈ δ. Hence

ℓ = ⟨dw, u, v,W ⟩ →δ ⟨w, u, v,W ⟩ = r.

4 One can consider transforming to realtime form in every iteration, but then the
termination argument becomes more involved.

15

– d → ci d1 . . . dn ∈ R and R ⊢ ci d1 . . . dn : s ↪→ t. Then d
ci−→ d1 . . . dn ∈ δ,

s = c s1 . . . sn, and t = t1 . . . tn with R ⊢ di : si ↪→ ti for all i. We
conclude the claim as follows:

ℓ →δ ⟨d1 . . . dn w, s1 . . . sn u, v,W ⟩
→∗

δ ⟨d2 . . . dn w, s2 . . . sn u, v t1,W ⟩ by IH for R ⊢ d1 : s1 ↪→ t1

· · ·
→∗

δ ⟨w, u, v t1 . . . tn,W ⟩ = r by IH for R ⊢ dn : sn ↪→ tn.

– d → f i(d′) d1 . . . dn ∈ R and R ⊢ f i(d′) d1 . . . dn : s ↪→ t. Then d
f i(d′)
−−−→

d1 . . . dn ∈ δ, s = f(s′) s1 . . . sn, and t = t′ t1 . . . tn with R ⊢ d′ : s′ ↪→ t′

and R ⊢ di : si ↪→ ti for all i. We conclude as follows:

ℓ →δ ⟨d′, s′, v, ⟨d1 . . . dn w, s1 . . . sn u⟩W ⟩
→∗

δ ⟨ε, ε, v t′, ⟨d1 . . . dn w, s1 . . . sn u⟩W ⟩ by IH for R ⊢ d′ : s′ ↪→ t′

→δ ⟨d1 . . . dn w, s1 . . . sn u, v t′,W ⟩ →∗
δ r same as above.

– d → co d1 . . . dn ∈ R and R ⊢ co d1 . . . dn : s ↪→ t. Then d
co−→ d1 . . . dn ∈

δ, s = s1 . . . sn, and t = c t1 . . . tn with R ⊢ di : si ↪→ ti for all i. We
conclude ℓ →δ ⟨d1 . . . dn w, s1 . . . sn u, v a,W ⟩ →∗

δ r where the last step
is the same as above.

– d → fo(d′) d1 . . . dn ∈ R and R ⊢ fo(d′) d1 . . . dn : s ↪→ t. Then d
fo(d′)
−−−→

d1 . . . dn ∈ δ, s = s′ s1 . . . sn, and t = f(t′) t1 . . . tn with R ⊢ d′ : s′ ↪→ t′

and R ⊢ di : si ↪→ ti for all i. We conclude:

ℓ →δ ⟨d′, s u, ε, ⟨f, v, d1 . . . dn w⟩W ⟩
→∗

δ ⟨ε, s1 . . . sn u, t′, ⟨f, v, d1 . . . dn w⟩W ⟩ by IH for R ⊢ d′ : s′ ↪→ t′

→δ ⟨d1 . . . dn w, s1 . . . sn u, v f(t′),W ⟩
→∗

δ ⟨w, u, v f(t′) t1 . . . tn,W ⟩ = r same as above.

(⇐) We show by induction on k that ℓ = ⟨w, s u, v,W ⟩ →k
δ ⟨ε, u, v t,W ⟩ = r

implies R ⊢ w : s ↪→ t, where w ∈ D∗. If k = 0 then w = s = t = ε and the
claim follows immediately. Otherwise, the following cases are possible.
1. d → ε ∈ R, w = dw′, and ℓ →δ ⟨w′, s u, v,W ⟩ →k−1

δ r. Then by IH
R ⊢ w′ : s ↪→ t, and hence the claim follows.

2. d → ci w1 ∈ R, w = dw2, s = c s′, and ℓ →δ ⟨w1 w2, s
′ u, v,W ⟩ →k−1

δ r.
Then by IH, R ⊢ w1 w2 : s′ ↪→ t. So R ⊢ w1 : s1 ↪→ t1 and R ⊢ w2 : s2 ↪→
t2 with s′ = s1 s2 and t = t1 t2. We conclude as follows:

R ⊢ ci : c ↪→ ε R ⊢ w1 : s1 ↪→ t1
(IH)

R ⊢ ci w1 : c s1 ↪→ t1
R ⊢ d : c s1 ↪→ t1 R ⊢ w2 : s2 ↪→ t2

(IH)

R ⊢ dw2 : c s1 s2 ↪→ t1 t2

16

3. d → f i(d′)w1 ∈ R, w = dw2, s = f(s′) s′′, t = t′ t′′, and

ℓ = ⟨dw2, f(s
′) s′′ u, v,W ⟩ →δ ⟨d′, s′, v, ⟨w1 w2, s

′′ u⟩W ⟩
→m

δ ⟨ε, ε, v t′, ⟨w1 w2, s
′′ u⟩W ⟩

→δ ⟨w1 w2, s
′′ u, v t′,W ⟩ →k−m−2

δ ⟨ε, u, v t′ t′′,W ⟩ = r

Asm, k−m−2 < k, by IH we have R ⊢ d′ : s′ ↪→ t′ and R ⊢ w1 w2 : s′′ ↪→
t′′. Hence we obtain s′′ = s1 s2 and t′′ = t1 t2 such that R ⊢ w1 : s1 ↪→ t1
and R ⊢ w2 : s2 ↪→ t2. We conclude similarly to the previous case.

4. d → co w1 ∈ R, w = dw2, t = c t′, and ℓ →δ ⟨w1 w2, s u, v c,W ⟩ →k−1
δ

⟨ε, u, v c t′,W ⟩ = r. Then the arguments are the same as case 2.
5. d → fo(d′)w1 ∈ R, w = dw2, s = s′ s′′, t = f(t′) t′′, and

ℓ = ⟨w, s′ s′′ u, v,W ⟩ →δ ⟨d′, s′ s′′ u, ε, ⟨f, v, w1 w2⟩W ⟩
→m

δ ⟨ε, s′′ u, t′, ⟨f, v, w1 w2⟩W ⟩
→δ ⟨w1 w2, s

′′ u, v f(t′),W ⟩ →k−m−2
δ ⟨ε, u, v f(t′) t′′,W ⟩ = r

Then the arguments are the same as case 3. ⊓⊔

6 Implementation

Based on our theoretical development, we implemented an XML-processing tool
TXtruct5 in Java. The command line of TXtruct is as follows:

java -jar txtr-version.jar txtr-file input output

where txtr-file is an XML file representing a hedge translation grammar G, input
is a file representing the input hedge s, and output is the file to which a hedge t
such that s ↪→G t will be written. The grammar of txtr-file is as follows:

txtr-file ::= <txtruct (method="method")?>

<input method="method"/>? class-declaration∗ expression∗

</txtruct>

The two methods indicate the output and input formats, in regular expression
xml(-fragment)? | html(-fragment)? | text. A class-declaration of form

<class name="d">
<option level="ℓ1">e1</option> . . . <option level="ℓn">en</option>

</class>

defines a family {dℓ}ℓ∈N of nonterminals with dℓ → ei ∈ R whenever ℓ ≤ ℓi. The
last sequence of expressions specifies d0 ::= e1 . . . en. Constructions of expres-
sions are as follows:

5 Available at https://github.com/AkihisaYamada/TXtruct.

17

https://github.com/AkihisaYamada/TXtruct

Fig. 3. The HTML obtained by transforming txtr2html.txtr by itself.

– <group>e1 . . . en</group> representing e1 . . . en.
– <call ref="d" (level="ℓ")?/> representing nonterminal d (or dℓ).
– <match pattern="p" (as="x")?/> representing pi, but p is allowed to be

a regular expression as defined by the Java regular expression library. One
can save the match result by specifying attribute as="x", and output the
matched text by <value-of select="x/match"/>.

– <in-element name="f">e</in-element> representing f i(e).
– <text>c1 . . . cn</text> representing co1 . . . c

o
n.

– <element name="f">e</element> representing fo(e).

These elements can have occurrence indicators like XSD; e.g., <call ref="d"
minOccurs="0" maxOccurs="unbounded"/> represents d∗.

The release of TXtruct contains a translation rule file txtr2html.txtr,
whose input is a TXtruct rule file and output is an HTML prettyprint of
the grammar defined by the input rule file. Hence, by defining a grammar in
TXtruct, one obtains an HTML description of the grammar for free. Moreover,
since txtr2html.txtr itself is a valid TXtruct rule file, it can transform itself
and prettyprint the input format of TXtruct (see Fig. 3).

7 Conclusion

We have introduced context-free hedge grammars and translation grammars.
We have proved that the class of hedge languages generated by regular hedge
grammars corresponds to the existing class of regular hedge languages. We then
introduced a top-down definition of hedge automata, which we also proved to
be equivalent to the existing bottom-up definition. Our top-down definition led
to the extension to push-down hedge automata and transducers. We proved
that relationships among them hold as in the string case. Finally, based on the

18

theoretical development we implemented the tool TXtruct. TXtruct has been
incorporated into a document analysis tool Tact and used in industry.

For practical reasons, TXtruct implementation goes beyond the theory pre-
sented in this paper. For instance, TXtruct resolves nondeterminism in the man-
ner of parsing expression grammar [For04]; has methods to read/write attributes
and comments; allows calling nonterminals with parameters; allows cascading
output into another transformation. We leave formalizing these details for fu-
ture work. Finally, while our main focus was on translating documents, TXtruct
can be used to validate if a document is in a hedge language. We expect our work
to be a basis for developing techniques to verify that a given hedge translation
grammar always results in a desired hedge language.

Acknowledgments The first author would like to thank Hitoshi Ohsaki and
Ken’ichi Handa.

References

BPS61. Yehoshua Bar-Hillel, Micha Perles, and Eli Shamir. On formal properties
of simple phrase-structure grammars. Zeitschrift für Phonetik, Sprachwis-
senschaft, und Kommunikationsforschung, 14(2):143–172, 1961.

CBM19. Stefano Crespi-Reghizzi, Luca Breveglieri, and Angelo Morzenti. Formal
Languages and Compilation, Third Edition. Texts in Computer Science.
Springer, 2019.

Dom14. Massimiliano Dominici. An overview of pandoc. TUGboat, 35(1):44–50,
2014.

For04. Bryan Ford. Parsing expression grammars: a recognition-based syntactic
foundation. In POPL 2004, pages 111–122, 2004.

HOT17. Kenichi Handa, Hitoshi Ohsaki, and Izumi Takeuti. Security Require-
ments Analysis Supporting Tool: TACT. In Proceeding of the Information
Processing Society of Japan (IPSJ) SIGSE Winter Workshop, 2017.

Kay21. Michael Kay. XSL transformations (XSLT) version 2.0 (sec-
ond edition). W3C recommendation, W3C, March 2021.
https://www.w3.org/TR/2021/REC-xslt20-20210330/.

Leo16. Sean Leonard. The text/markdown Media Type. RFC 7763, Internet
Engineering Task Force (IETF), 2016.

MT06. Yasuhiko Minamide and Akihiko Tozawa. XML Validation for Context-
Free Grammars. In Naoki Kobayashi, editor, APLAS 2006, volume 4279
of LNCS, pages 357–373. Springer, 2006.

MTSM+12. Noah Mendelsohn, Henry Thompson, Michael Sperberg-McQueen, Mur-
ray Maloney, Sandy Gao, and David Beech. W3C xml schema definition
language (XSD) 1.1 part 1: Structures. W3C recommendation, W3C, April
2012. https://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/.

Mur99. Makoto Murata. Hedge automata: a formal model for XML schemata.
http://www.xml.gr.jp/relax/hedge_nice.html, 1999.

PQ68. C. Pair and A. Quere. Définition et Étude des Bilangages Réguliers. In-
formation and Control, 13(6):565–593, December 1968.

Rou69. William C. Rounds. Context-free grammars on trees. In Patrick C. Fis-
cher, Seymour Ginsburg, and Michael A. Harrison, editors, STOC 1969,
pages 143–148. ACM, 1969.

19

http://www.xml.gr.jp/relax/hedge_nice.html

A Omitted Proofs

Lemma 5. Every HTG G has an equivalent shallow HTG Gnlr without direct
left recursion, i.e., rules of the form d → d e.

Proof. Thanks to Lemma 3, we start with a shallow HTGGs =
〈
Σ i, Σo, D, d0, R

〉
.

Let L(d) be the set of l-recursive rules in R. If L(d) = ∅ for every d ∈ D then we
are done. Otherwise, pick d with L(d) ̸= ∅. Let d′ be a fresh nonterminal, and
define G′ =

〈
Σ i, Σo, D ⊎ {d′}, d0, R′〉, where

R′ = R \ L(d) ∪ {d → e d′ | d → e ∈ R \ L(d)} ∪
{d′ → e, d′ → e d′ | d → d e ∈ L(d), e ̸= ε}

Repeatedly applying the process we can remove all l-recursive rules. It is clear
that G′ is shallow as Gs is. It remains to show R ⊢ e : s ↪→ t ⇐⇒ R′ ⊢ e : s ↪→ t.

(⇒) By induction on the derivation. The only nontrivial case is R ⊢ d e : s ↪→ t
with d → d e ∈ L(d). We show that this implies R′ ⊢ e′ d′ : s ↪→ t for some
d → e′ ∈ R \ L(d); then we easily conclude R′ ⊢ d : s ↪→ t as d → e′ d′ ∈ R′.

We prove the new claim by induction on the derivation of R ⊢ d e : s ↪→ t.
We know that s and t are split into s = s′ s′′ and t = t′ t′′ such that R ⊢ d :
s′ ↪→ t′ and R ⊢ e : s′′ ↪→ t′′. We have R′ ⊢ e : s′′ ↪→ t′′ by outer IH. We do
case analysis.

– Suppose that there exists d → d e′ ∈ L(d) with R ⊢ d e′ : s′ ↪→ t′.
Then inner IH gives d → e′′ ∈ R \ L(d) such that R′ ⊢ e′′ d′ : s′ ↪→ t′.
Then we know s′ and t′ are split into s′ = uu′ and t′ = v v′, such that
R′ ⊢ e′′ : u ↪→ v and R′ ⊢ d′ : u′ ↪→ v′. Since d′ → e′′ d′ ∈ R′, we derive
R′ ⊢ d′ : u′ s′′ ↪→ v′ t′′. We conclude R′ ⊢ e′′ d′ : uu′ s′′ ↪→ v v′ t′′, i.e.,
R′ ⊢ e′′ d′ : s ↪→ t.

– Otherwise, we must have d → e′ ∈ R \ L(d) and R ⊢ e′ : s′ ↪→ t′. We
conclude R′ ⊢ e′ d′ : s ↪→ t, since R′ ⊢ d′ : s′′ ↪→ t′′ as d′ → e ∈ R′.

(⇐) By induction on the derivation. The only nontrivial case is R′ ⊢ d : s ↪→ t
due to R′ ⊢ e d′ : s ↪→ t for d → e ∈ R \ L(d). Then we have R′ ⊢ e : s′ ↪→ t′

and R′ ⊢ d′ : s′′ ↪→ t′′ for s = s′ s′′ and t = t′ t′′. By IH we have R ⊢ e :
s′ ↪→ t′, and hence R ⊢ d : s′ ↪→ t′ as d → e ∈ R. We conclude by showing
that R ⊢ d : s′ ↪→ t′ and R′ ⊢ d′ : s′′ ↪→ t′′ implies R ⊢ d : s′ s′′ ↪→ t′ t′′ by
induction on the derivation of R′ ⊢ d′ : s′′ ↪→ t′′.

– Suppose that R′ ⊢ e′ : s′′ ↪→ t′′ for d → d e′ ∈ L(d). By outer IH we have
R ⊢ e′ : s′′ ↪→ t′′. With R ⊢ d : s′ ↪→ t′ we conclude R ⊢ d : s′ s′′ ↪→ t′ t′′.

– Suppose that R′ ⊢ e′ d′ : s′′ ↪→ t′′ for d → d e′ ∈ L(d). Then we have
R′ ⊢ e′ : u ↪→ v and R′ ⊢ d′ : u′ ↪→ v′ for s′′ = uu′ and t′′ = v v′. By
outer IH we have R ⊢ e′ : u ↪→ v, and with inner IH, R ⊢ d : s′ u ↪→ t′ v.
Since d → d e′ ∈ R, we conclude R ⊢ d : s′ uu′ ↪→ t′ v v′. ⊓⊔

20

B On Context-Free Word Grammars Generating
Matched Tags

This section studies context-free word grammars that generate matched tags and
proves Lemma 2.

Let G = (N ,W,R) be a context-free word grammar over a paired alphabet

Σ̂ = Σ0 ∪{f́ , f̀ | f ∈ Σ1}. For simplicity, we assume that Σ0 = ∅ in this section.
This does not essentially affect the following argument: one can consider another
signature Σ′ with Σ′

0 = ∅ and Σ′
1 = Σ0 ∪Σ1 and replace c with ćc̀.

We assume that (1) every non-terminal N ∈ N is reachable (i.e. W →∗ αNβ
for some sequences α and β of terminals and non-terminals) and (2) every non-
terminal produces a word. This assumption does not lose generality since we
can simply remove a non-terminal that violates the above requirement without
changing the generated language.

A word w over Σ̂ is matched if w = ŝ for some hedge s. We assume that
L(G) = Ĥ for some hedge language H, so w ∈ L(G) implies w is matched. The
following argument is a slightly more detailed version of Minamide and Tozawa’s
analysis [MT06] of matched words and context-free grammars.

A substring w of a matched word v = v0wv1 can be canonically decomposed
as follows:

w = m0f̀1m1f̀2m2 . . .mn−1f̀nmnǵ1mn+1 . . .mn+k−1ǵkmn+k

for some n, k ≥ 0, wherem0, . . . ,mn+k are matched words. We call f̀1 . . . f̀nǵ1 . . . ǵk
the shape of w and write as ♯w.

Lemma 6. Let G = (N ,W,R) be a context-free word grammar generating only
matched words. For a N ∈ N , the shapes of words generated by N are finite,
i.e.,

{♯w | w ∈ L(N)} is a finite set.

Proof. Since N is reachable, W →∗ αNβ for some sequences α, β of terminals
and non-terminals. By rewriting the non-terminals in α and β, one obtainsW →∗

vNu. The shape of v and u must be

♯v = f́1f́2 . . . f́n ♯u = g̀k `gk−1 . . . g̀1

since w ∈ L(N) for some w and vwu is matched. For every w ∈ L(N), the word
vwu is matched. This means that

♯w ∈ {f̀n `fn−1 . . . f̀iǵi ´gi+1 . . . ǵk | i ≤ n, i ≤ k, fj = gj for every j = 1, . . . , i− 1}.

So {♯w | w ∈ L(N)} has at most n elements. ⊓⊔

Let ♯N = {♯w ∈ w ∈ L(N)}.

Lemma 7. Let G = (N ,W,R) be a context-free word grammar generating only
matched words. There exists a grammar G′ = (N ′,W ′,R′) that satisfies the
following conditions:

21

– L(G′) = L(G).
– G′ is in Chomsky normal form.
– ♯N ′ is a singleton for every non-terminal N ∈ N .

Proof. For simplicity, we assume that G is in Chomsky normal form. Of course,
this does not lose generality. The non-terminals of G′ is given by {N (ρ) | N ∈
N , ρ ∈ ♯N}. This is a finite set by Lemma 6. We aim to provide rules such that

L(N (ρ)) = L(N) ∩ {w | ♯w = ρ}.

The rules are given as follows:

– If (N → N1N2) ∈ R, then (N (ρ) → N
(ρ1)
1 N

(ρ2)
2) ∈ R′ for ρ1 ∈ ♯N1 and

ρ2 ∈ ♯N2 with ρ = ♯(ρ1ρ2).
– If (N → a) ∈ R and a = ρ, then (N (ρ) → a) ∈ R′.
– If (W → ε) ∈ R, then (W (ε) → ε) ∈ R′.

The start symbol is W (ε). It is easy to see that G′ has the required properties.
⊓⊔

For a grammar satisfying the conditions in the previous lemma, we write ♯N
for the unique shape of w ∈ L(N). If ♯N = f̀1 . . . f̀nǵ1 . . . ǵk, then c(N) = f̀1 . . . f̀n
and o(N) = ǵ1 . . . ǵk. We write |c(N)| and |o(N)| for their lengths.

Proof (of Lemma 2). Let H be a hedge language and assume that Ĥ is context
free. Then there exists a context-free grammar G = (N ,W,R) that generates

Ĥ. By Lemma 7, we can assume without loss of generality that G satisfies the
conditions in Lemma 7.

For a non-terminal N ∈ N and a prefix α of ♯N , we define L(N)(α) as the
word language defined as⋃{

path(s)
∣∣ vŝv′ ∈ L(N), α = ♯v, ♯N = (♯v)(♯v′)

}
.

Note that the condition ♯N = (♯v)(♯v′) means that no tag in ♯v matches a tag in
♯v′. In other words, either ♯v has no open tag or ♯v′ has no close tag (or both).
Then the path language path(H) is equivalent to L(W)(ε).

We give a grammar consisting of non-terminals generating L(N)(α). Let

N ′ = {N (α) | N ∈ N , α is a prefix of ♯N }.

The start symbol is W (ε). The rules are given as follows. Let N ∈ N and α be a
prefix α of ♯N . Assume α = αCαO, where αC and αO consist of close and open
tags, respectively. The rules for the non-terminal N (α) are given as follows:

– (N (α) → ε) ∈ R′.
– Assume (N → N1N2) ∈ R.

• If αf́1 . . . f́k is a prefix of ♯N1, then

(N (α) → f1 . . . fkN
(αf́1...f́k)
1) ∈ R′.

22

• If ♯N1 = αf́1 . . . f́k and f̀k . . . f̀i+1 is a prefix of ♯N2, then

(N (k) → f1 . . . fiN
(f̀k...f̀i+1)
2) ∈ R′.

• If β is a prefix of ♯N2 and α = ♯((♯N1)β), then

(N (k) → N
(β)
2) ∈ R′.

It is not difficult to see that L(N (k)) = L(N)(k). Since the above rules are of
the form M → gM ′ where M,M ′ are non-terminals and g is a (possibly empty)
sequence of terminals, these rules actually generate a regular language.

We prove L(N)(α) ⊆ L(N (α)). Let p ∈ L(N)(α). Then w = vŝv′ ∈ L(N)
and α = ♯v and ♯N = (♯v)(♯v′). We prove p ∈ L(N (α)) by induction on the
number of production rules to derive w ∈ L(N). If the length is 1, the production

must be N → f̀ or N → f́ . So p = ε and we have N (α) → ε. Assume that
N → N1N2 →∗ vŝv′.

– Case v = v1v2 and v1 ∈ L(N1) and v2ŝv
′ ∈ L(N2): Then β1β2 = ♯v, ♯v1 =

♯N1 = β1f́1 . . . f́n and ♯v2 = f̀n . . . f̀1β2 for some β1, β2, f1, . . . , fn. Since
there is no match in (♯v)(♯v′), there is no match in β2(♯v

′), hence (♯v2)(♯v
′)

has no match. Therefore (♯v2)(♯v
′) = ♯N2. Then p ∈ L(N

(♯v2)
2) by the IH, so

N (α) → N
(♯v2)
2 →∗ p.

– Case v′ = v′1v
′
2 and vŝv′1 ∈ L(N1) and v′2 ∈ L(N2): Then β′

1β
′
2 = ♯v′,

♯v′1 = β′
1f́1 . . . f́n and ♯v′2 = ♯N2 = f̀n . . . f̀1β2 for some β′

1, β
′
2, f1, . . . , fn.

Since there is no match in (♯v)(♯v′), there is no match in (♯v)β′
1, hence

(♯v)(♯v′1) has no match. So (♯v)(♯v′1) = ♯N1. By the IH, p ∈ L(N
(α)
1). Then

N (α) → N
(α)
1 →∗ p.

– Case ŝ = s1s2 and vs1 ∈ L(N1) and s2v
′ ∈ L(N2): We can assume without

loss of generality that s = f(s′) (by choosing the component that the path p
belongs to). Since ♯(s1s2) = ε, ♯s1 consists only of open tags and ♯s2 consists
only of close tags. So

s1 = f́ t̂0f́1t̂1 . . . t̂k−1f́k t̂k

s2 = t̂′kf̀k t̂
′
k−1 . . . t̂

′
1f̀1t̂

′
0f̀ .

A tail of the path p belongs to one of t0, t1, . . . , tk, t
′
k, . . . , t

′
1, t

′
0.

• Assume that the tail of the path belongs to ti. Then p = ff1 . . . fip
′ for

some p′ ∈ path(ti). Since (♯v)f́ f́1 . . . f́i is a prefix of ♯N1 and ♯(´fi+1t̂i+1 . . . t̂k−1f́k t̂k) =

´fi+1 . . . f́k, we have p
′ ∈ L(N

(αf́f́1...f́i)
1). We haveN (α) → ff1 . . . fiN

(αf́f́1...f́i)
1 →∗

ff1 . . . fip
′.

• Assume that the tail of the path belongs to t′i. Then p = ff1 . . . fip
′ for

some p′ ∈ path(t′i). Since t̀i . . . f̀1f̀(♯v
′) is a suffix of ♯N2 and ♯(t̂′kf̀k t̂

′
k−1 . . . t̂

′
i+1f̀i+1) =

f̀k . . . f̀i+1, we have p
′ ∈ L(N

(f̀k...f̀i+1)
2). We haveN (α) → ff1 . . . fiN

(f̀k...f̀i+1)
2 →∗

ff1 . . . fip
′.

The inclusion of the other direction can be easily proved. ⊓⊔

23

	 Hedge automata revisited: Transforming texts to and from XML

