
Scenario Sampling for Cyber Physical Systems
using Combinatorial Testing

Akihisa Yamada∗, Clovis Eberhart∗, Fuyuki Ishikawa∗, and Nian-Ze Lee†
∗ National Institute of Informatics, Tokyo, Japan

akihisayamada@nii.ac.jp, clovis.eberhart@gmail.com, f-ishikawa@nii.ac.jp
† National Taiwan University, Taipei, Taiwan

nianzelee@gmail.com

Abstract—Physical and continuous aspects are inevitable in
cyber physical systems like automated driving systems. De-
spite the success of combinatorial testing on discrete systems,
there is a fundamental challenge in applying combinatorial
testing techniques when continuous parameters are involved.
This extended abstract presents an initial step towards applying
combinatorial testing to systems in which discrete and continuous
parameters are mixed. We define a generic XML-based language
for describing the test space of such systems and provide a
prototype implementation to generate test cases, using externally
the combinatorial test tool PICT.

Index Terms—Cyber physical systems, Combinatorial testing,
Random testing

I. MOTIVATION

When testing cyber physical systems such as automated
driving systems, it is inevitable to choose real values for phys-
ical quantities. Consider an oversimplified automated driving
system, where ego vehicle is given an initial position x and
velocity v (which are real numbers) and there are several
obstacles in some positions, possibly static or moving forward
or backward at some velocity. An exhaustive testing of such
a physical system is not just infeasible but impossible: one
will need uncountably many test cases (scenarios) to cover
the possibility of any real-valued parameter.

Random testing [4] provides an obvious way of choosing
(i.e., sampling) real values from bounded real intervals and,
under a well-chosen distribution, from unbounded continuous
spaces. For the purpose of the quality assurance of safety-
critical systems, however, the “random” nature of random
testing might be undesirable; in particular, there is no agreed
notion of coverage that the random testing literature provides.

Combinatorial testing [5], on the other hand, provides a
well-defined quantitative coverage criterion—the combinato-
rial coverage—when the systems under test have only discrete
input parameters. We expect combinatorial coverage to be still
a useful criterion for cyber physical systems when continuous
parameters are appropriately partitioned; for instance, Fig. 1
shows four out of nine test cases covering all pairwise com-
binations of obstacles which can be in front or in back, static
or moving forward or backward.

The authors are supported by ERATO HASUO Metamathematics for
Systems Design Project (No. JPMJER1603), JST. The work is done during
N.L.’s internship at National Institute of Informatics, Tokyo, Japan.

egoobstacle 1 obstacle 2

...

Fig. 1. First four test cases of a pairwise test suite generated using the
combinatorial testing tool PICT.

In this work, we propose a general language for describing
test scenarios with discrete and continuous parameters mixed,
and provide a prototype implementation that generates con-
crete test cases from such a scenario description, by combining
both the combinatorial testing approach and random testing
approach. We have implemented a prototype scenario sam-
pler, available at https://github.com/ERATOMMSD/scenario
sampler code. This implementation externally calls the combi-
natorial testing tool PICT [3] for generating pairwise covering
test suites. In collaboration with our industry partner, we
actually used the scenario sampler for testing a prototype
implementation of a simulator of an automotive system.

II. SYNTAX AND SEMANTICS

Here we define the language of the Scenario Sampling
Script. The language constitutes of the following three layers:

`1 ::= text | <text>text<text>
| <random min="real" max="real"/>

`2 ::= `1 | <choice>`1+</choice>

`3 ::= `2 | <repeat>`3+</repeat>

By a layer-k script we mean a sequence of elements from
the corresponding layer. In the following, we describe the role
of each layer.

Layer 1: The first layer allows <random> tags, which
represent real values taken from the range specified by at-
tributes min and max, as well as plain text, which may be
enclosed in <text>. . .</text> tags in order to clarify the
structure. The structure of text is voluntarily kept ambiguous

https://github.com/ERATOMMSD/scenario_sampler_code
https://github.com/ERATOMMSD/scenario_sampler_code


"scenario": {
"ego": { "x": -0.110019, "v": 83.180578 },
"obstacles": [
{ "x": -30.431152, "v": 26.277911 },
{ "x": 45.284353, "v": 0 }

]
}

Fig. 2. A concrete “scenario”, where the positions and velocities of “ego”
and two “obstacles” are unambiguously specified.

"scenario": {
"ego": {
"x": <random min="-3" max="3"/>,
"v": <choice>

<text>0</text>
<random min="0" max="30"/>
<random min="30" max="100"/>
</choice> },

"obstacles": [
{ "x": <choice>

<random min="-50" max="-3"/>
<random min="3" max="50"/>
</choice>,

"v": <choice>
<random min="-100" max="0"/>
<text>0</text>
<random min="0" max="100"/>
</choice> }, ...

]
}

ego_v: stop, slow, fast
obstacles_1_x: back, front
obstacles_1_v: backward, stop, forward
obstacles_2_x: back, front
obstacles_2_v: backward, stop, forward

Fig. 3. Above: A “scenario” with discrete choices, where “ego” is either stop-
ping, moving slow, or moving fast, each of the two obstacles is either in front
or back, and either stopping, moving forward or moving backward. Below:
A corresponding PICT model, with informative names (in the implementation
they get non-informative names).

as this is a prototype, and we use JSON as an example
(Fig. 2). One can also think of a well-defined XML provided
that tag names defined in our language do not conflict. The
choice of real values is done by random testing; thus one may
sample many concrete scenarios out of one `1 script. In this
preliminary work we leave it to domain experts to judge how
many scenario should be sampled form an `1 script.

Layer 2: This layer allows discrete <choice> tags. In
practice, a <choice> tag should have at least two children,
where each child represents an option for the choice. These
choices are resolved either by random testing or combinatorial
testing. For instance, Fig. 3 shows an `2 -script and a corre-
sponding PICT model.

Layer 3: This final layer allows <repeat> tags, which
indicate that the contents can occur arbitrarily many times,
where attributes minOccurs and maxOccurs specify the
range of the number of occurrences. If the delim attribute
is specified, then its value is put in between repetitions. Here
again a domain knowledge is (yet) necessary to argue how

"scenario": {
"ego": {

"x": <random min="-3" max="3"/>,
"v": <choice>

<text>0</text>
<random min="0" max="30"/>
<random min="30" max="100"/>

</choice> },
"obstacles": [
<repeat minOccurs="1" maxOccurs="5" delim=",">
{ "x": <choice>

<random min="-50" max="-3"/>
<random min="3" max="50"/>
</choice>,

"v": <choice>
<random min="-100" max="0"/>
<text>0</text>
<random min="0" max="100"/>
</choice> }

</repeat>
]

}

Fig. 4. A fully generalized “scenario”, with at most five obstacles.

many different numbers of repetition should be tested.

III. CONCLUSION AND FUTURE WORK

In this extended abstract, we proposed a language to de-
scribe scenarios where both continuous real-valued parameters
and discrete parameters are involved. We provide a prototype
implementation of a tool that inputs such a scenario description
and outputs a set of concrete scenarios by combining random
testing and combinatorial testing. This preliminary work opens
up a vast field for further exploration.

• How effective is combinatorial testing for cyber physical
systems in terms of failure detection?

• What kind of combinatorial coverage should we focus
on? For instance, it seems redundant to distinguish obsta-
cle 1 and obstacle 2 in our example. Also when consider-
ing a scenario with time stages, intuitively we would like
to consider a mixed-strength coverage concerning only
combinations of adjacent time stages.

• How do we handle constraints which, on cyber physical
systems, are naturally about real variables and real func-
tions. It is nontrivial how to turn real constraints into
discrete constraints on the combinatorial testing level.

• How should we systematically sample from `1 and `3
scripts? We plan to incorporate adaptive random test-
ing [2] and regular language sampling [1].

REFERENCES

[1] P. Arcaini, A. Gargantini, and E. Riccobene. Fault-based test generation
for regular expressions by mutation. Software Testing, Verification and
Reliability, March 2018.

[2] Tsong Yueh Chen, Fei-Ching Kuo, Robert G. Merkel, and T. H. Tse.
Adaptive random testing: The ART of test case diversity. Journal of
Systems and Software, 83(1):60–66, 2010.

[3] Jacek Czerwonka. Pairwise testing in real world. In PNSQC 2006, pages
419–430, 2006.

[4] Richard Hamlet. Random Testing. American Cancer Society, 2002.
[5] D. Richard Kuhn, Raghu N. Kacker, and Yu Lei. Introduction to

Combinatorial Testing. CRC press, 2013.


	Motivation
	Syntax and Semantics
	Conclusion and Future Work
	References

